Skip to main content
Log in

Structure, dynamics and spectroscopy of single molecules: A challenge to quantum mechanics

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. Aharonov, J. Anandan and L. Vaidman, Phys. Rev. A47 (1993) 4616.

    Google Scholar 

  2. A. Amann, J. Math. Phys. 27 (1986) 2282.

    Google Scholar 

  3. A. Amann, Fortschr. Phys. 34 (1986) 167.

    Google Scholar 

  4. A. Amann, J. Math. Phys. 28 (1987) 2384.

    Google Scholar 

  5. A. Amann, Chirality as a classical observable in algebraic quantum mechanics, in:Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics,eds. A. Amann, L. Cederbaum and W. Gans (Kluwer, Dordrecht, 1988) pp. 305–325.

    Google Scholar 

  6. A. Amann, J. Math. Chem. 6 (1991) l.

    Google Scholar 

  7. A. Amann, Ann. Phys. 208 (1991) 414.

    Google Scholar 

  8. A. Amann, Molecules coupled to their environment, in:Large-Scale Molecular Systems: Quantum and Stochastic Aspects — Beyond the Simple Molecular Picture, NATO ASI Series B258, eds. W. Gans, A. Blumen and A. Amann (Plenum, London, 1991) pp. 23–22.

    Google Scholar 

  9. A. Amann, Theories of molecular chirality: A short review, in:Large-Scale Molecular Systems: Quantum and Stochastic Aspects- Beyond the Simple Molecular Picture, NATO ASI Series B258, eds. W. Gans, A. Blumen and A. Amann (Plenum, London, 1991) pp. 23–32.

    Google Scholar 

  10. A. Amann, J. Chem. Phys. 96 (1992) 1317

    Google Scholar 

  11. A. Amann, South African J. Chem. 45 (1992) 29.

    Google Scholar 

  12. A. Amann, Synthese 97 (1993) 125.

    Google Scholar 

  13. A. Amann, Modelling the quantum mechanical measurement process, Int. J. Theor. Phys. 34 (1995) 1187.

    Google Scholar 

  14. A. Amann, The quantum-mechanical measurement process in the thermodynamic formalism,Symp. on the Foundations of Modern Physics 1993 — Quantum Measurement, Irreversibility, and the Physics of Information, eds. P. Busch, P. Lahti and P. Mittelstaedt (World Scientific, Singapur, 1994) pp. 3–19.

    Google Scholar 

  15. A. Amann, An individual interpretation of quantum mechanics, to appear inProc. Fourth Winter School on Measure Theory, Liptovsky Jan, Slovakia, 1995.

    Google Scholar 

  16. A. Amann, An individual interpretation of quantum mechanics and quantum theory of molecular shape, to appear inProc. Conf. on: Riflessioni Epistemologiche e Metodologiche sulla Chimica, Rome, 1994.

  17. A. Amann and H. Primas, What is the referent of a nonpure quantum state?, to appear inExperimental Metaphysics—Quantum Mechanical Studies in Honor of Abner Shimony, eds. R.S. Cohen and J. Stachel.

  18. W.P. Ambrose and W.E. Moerner, Nature 349 (1991) 225.

    Google Scholar 

  19. L. Arnold,Stochastic Differential Equations: Theory and Applications (Interscience, New York, 1974).

    Google Scholar 

  20. A. Aspect, J. Dalibard and G. Roger, Phys. Rev. Lett. 49 (1982) 91.

    Google Scholar 

  21. A. Aspect, G. Grangier and G. Roger, Phys. Rev. Lett. 49 (1982) 1804.

    Google Scholar 

  22. H. Atmanspacher, G. Wiedenmann and A. Amann, The endo-exodistinction and its relevance for the study of complex systems, Complexity l (1995) 15.

    Google Scholar 

  23. E. Beltrametti and S. Bugajski, A classical extension of quantum mechanics, to appear in J. p Phys. A (1995).

  24. J.C. Bergquist, R.G. Hulet, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 57 (1986) 1699.

    Google Scholar 

  25. V. Bertolasi, P. Gilli, V. Ferretti and G. Gilli, J. Am. Chem. Soc. 113 (1991) 4917.

    Google Scholar 

  26. J.J. Binney, N.J. Dowrick, A.J. Fisher and M.E.J. Newman,The Theory of Critical Phenomena. An Introduction to the Renormalization Group (Clarendon Press, Oxford, 1992

    Google Scholar 

  27. [27]M. Bixon and J. Jortner, J. Chem. Phys. 48 (1968) 715.

    Google Scholar 

  28. P. Blanchard and A. Jadczyk, Event-enhanced quantum theory and piecewise deterministic dynamics, Preprint (1994).

  29. P. Bóna, J. Math. Phys. 29 (1988) 2223.

    Google Scholar 

  30. P. Bóna, J. Math. Phys. 30 (1989) 2994.

    Google Scholar 

  31. E. Borel,Introduction Géométrique á Quelques Theories Physiques (Gauthier-Villars, Paris, 1914).

    Google Scholar 

  32. S. Bratan and F. Strohbusch, J. Mol. Struct. 61 (1980) 409.

    Google Scholar 

  33. O. Bratteli and D.W. Robinson,Operator Algebras and Quantum Statistical Mechanics, Vol. 2 (Springer, NewYork, 1981).

    Google Scholar 

  34. O. Bratteli and D.W. Robinson,Operator Algebra and Quantum Statistical Mechanics, Vol. 1 (Springer, 2nd revised Ed., New York, 1987).

    Google Scholar 

  35. T. Breuer, A. Amann and N. Landsman, J. Math. Phys. 34 (1993) 5441.

    Google Scholar 

  36. T. Breuer, A. Amann and N.P. Landsman, Disjoint final states in robust quantum measurements,Symp. on the Foundations of Modern Physics 1993 — Quantum Measurement, Irreversibility, and the Physics of Information, eds. P. Busch, P. Lahti and P. Mittelstaedt (World Scientific, Singapur, 1994) pp. 118–123.

    Google Scholar 

  37. L.J. Bunce and J. Hamhalter, Math. Z. 215 (1994) 491.

    Google Scholar 

  38. P. Busch, P.J. Lahti and P. Mittelstaedt,The Quantum Theory of Measurement (Springer, Berlin, 1991).

    Google Scholar 

  39. [39]S.M. Chumakov, K.-E., Hellwig and A.L. Rivera, Phys. Lett. A197 (1995) 73.

    Google Scholar 

  40. J.A. Cina and R.A. Harris, J. Chem. Phys. 100 (1994) 2531.

    Google Scholar 

  41. J.A. Cina and R.A. Harris, Science 267 (1995) 832.

    Google Scholar 

  42. H. Cramer, Sur un nouveau theoréme-limite de la Théorie des probabilités, in:Actualités Scientifiques et Industrielles, No. 736: Colloque Consacré á la Theorie des Probabilites (Hermann, Paris, 1937) pp. 5–23.

    Google Scholar 

  43. M. Croci H.-J. Müschenbom, F. Gi1ttler, A. Renn and U.P. Wild, Chem. Phys. Lett. 212 (1993) 71.

    Google Scholar 

  44. C. Dellacheri and P.A. Meyer,Probabilites et Potentiels B (Hermann, Paris, 1980).

    Google Scholar 

  45. J.-D. Deuschel and D.W. Stroock,Large Deviations (Academic Press, San Diego, 1989).

    Google Scholar 

  46. R.S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

  47. M. Emery,Stochastic Calculus in Manifolds (Springer, Berlin, 1989).

    Google Scholar 

  48. B. d. Espagnat, An elementary note about “mixtures”, in:Preludes in Theoretical Physics, eds. A. De-Shalit, H. Feshbach and L. v. Hove (North-Holland, Amsterdam, 1966).

    Google Scholar 

  49. M. Fannes, Temperature states of spin-boson models, in:Quantum Probability and Applications IV, Lecture Notes in Mathematics Vol. 1396, eds. L. Accardi and W. von Waldenfels (Springer, Berlin, 1989).

    Google Scholar 

  50. M. Fannes, B. Nachtergaele and A. Verbeure, Europhys. Lett. 4 (1987) 963.

    Google Scholar 

  51. M. Fannes, B. Nachtergaele and A. Verbeure, Commun. Math. Phys. 114 (1988) 537.

    Google Scholar 

  52. M. Fannes, B. Nachtergaele and A. Verbeure, J. Phys. A21 (1988) 1759.

    Google Scholar 

  53. E. Fermi,Notes on Quantum Mechanics (The University of Chicago Press, Chicago, 1961).

    Google Scholar 

  54. E. Fick and G. Sauermann,Quantenstatistik dynamischer Prozesse; Band IIa: Antwort- und Relaxationstheorie (Verlag Harri Deutsch, Thun, 1986).

    Google Scholar 

  55. J. Gea-Banacioche, Phys. Rev. Lett. 65 (1990) 3385.

    Google Scholar 

  56. J. Gea-Banacloche, Phys. Rev. A44 (1991) 5913.

    Google Scholar 

  57. G.C. Ghirardi, P. Pearle and T. Weber, Phys. Rev. A42 (1990) 78.

    Google Scholar 

  58. G.C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D34 (1986) 479.

    Google Scholar 

  59. N. Gisin, Phys. Rev. Lett. 52 (1984) 1657.

    Google Scholar 

  60. N. Gisin, Helv. Phys. Acta 62 (1989) 363.

    Google Scholar 

  61. M.L. Goldberger and K.M. Watson,Collision Theory (Wiley, New York, 1964).

    Google Scholar 

  62. F. Güttler, T. Irgnartinger, T. Plakhotnik, A. Renn and U.P. Wild, Chem. Phys. Lett. 217 (1994) 393.

    Google Scholar 

  63. F. Güttler, J. Sepiol, T. Plakhotnik, A. Mitterdorfer, A. Renn and U.P. Wild, J. Lumin. 56 (1993) 29.

    Google Scholar 

  64. J. Harnhalter, Ann. Inst. Henri Poincaré 58 (1993) 173.

    Google Scholar 

  65. G.S. Hammond, H. Gotthardt, L.M. Coyne, M. Axelrod, D.R. Rayner and K. Mislow, J. Am. Chem. Soc. 87 (1965) 4959.

    Google Scholar 

  66. S. Haroche, Cavity quantum electrodynamics, in:Fundamental Systems in Quantum Optics, Les Houches Session 53, eds. J. Dalibard, J.M. Raimond and J. Zinn-Justin (North-Holland, Amsterdam, 1992).

    Google Scholar 

  67. F.H. Herbstein, M. Kapon, G.M. Reisner, M.S. Lehman, R.B. Kress, R.B. Wilson, W.-I. Shiau, E.N. Duesler, I.C. Paul and D.Y. Curtin, Proc. R. Soc. Lond. A399 (1985) 295.

    Google Scholar 

  68. F. Hund, Z. Phys. 43 (1927) 805.

    Google Scholar 

  69. J.M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968).

    Google Scholar 

  70. [70]E.T. Jaynes, Phys. Rev. 106 (1957) 620.

    Google Scholar 

  71. R.E. Kalman, Math. Jap. 41 (1995) 41.

    Google Scholar 

  72. T. Kato,Perturbation Theory for Linear Operators (Springer, New York, 1966).

    Google Scholar 

  73. S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. I (Wiley, New York, 1963).

    Google Scholar 

  74. R. Kubo, M. Toda and N. Hashitsume,Statistical Physics II (Springer, Berlin, 1985).

    Google Scholar 

  75. S.G. Kukolich, J.H.S. Wang and D.E. Oates, Chem. Phys. Lett. 20 (1973) 519.

    Google Scholar 

  76. O.E. Lanford, Entropy and equilibrium states in classical statistical mechanics, in:Statistical Mechanics and Mathematical Problems, ed. A. Lenard (Springer, Berlin, 1973) pp. 1–113.

    Google Scholar 

  77. B.B. Mandelbrot and C.J.G. Evertsz, Exactly self-similar left-sided multifractals, in:Fractals and Disordered Systems, eds. A. Bunde and S. Havlin (Springer, Berlin, 1991).

    Google Scholar 

  78. R. Meyer and R.R. Ernst, J. Chem. Phys. 86 (1987) 784.

    Google Scholar 

  79. K. Mislow, M. Axelrod, D.R. Rayner, H. Gotthardt, L.M. Coyne and G.S. Hammond, J. Am. Chem. Soc. 87 (1965) 4958.

    Google Scholar 

  80. B. Misra, On a new definition of quantal states, in:Physical Reality and Mathematical Description, eds. C.P. Enz and J. Mehra (Reidel, Dordrecht, 1974) pp. 455–476.

    Google Scholar 

  81. W.E. Moerner, Science 265 (1994) 46.

    Google Scholar 

  82. W. E. Moemer and T. Basché, Angew. Chem. Int. Ed. 32 (1993) 457.

    Google Scholar 

  83. W.E. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm and U.P. Wild, J. Phys. Chem. 98 (1994) 7382.

    Google Scholar 

  84. W.E. Moerner, T. Plakhotnik, T. Irngartinger, U.P. Wild, D.W. Pohl and B. Hecht, Phys. Rev. Lett. 73 (1994) 2764.

    Google Scholar 

  85. U. Müller-Herold, Lett. Math. Phys. 8 (1984) 127.

    Google Scholar 

  86. W. Nagourney, J. Sandberg and H. Dehmelt, Phys. Rev. Lett. 56 (1986) 2797.

    Google Scholar 

  87. M. Ohya and D. Petz,Quantum Entropy and its Use (Springer, Berlin, 1993).

    Google Scholar 

  88. M. Orrit, J. Bernard and R.L. Personov, J. Phys. Chem. 97 (1993) 10256.

    Google Scholar 

  89. D. Papousek and V. Spirko, A new theoretical look at the inversion problem in molecules, in:Topics in Current Chemistry, Vol. 68 (Springer, Berlin, 1976) pp. 59–102.

    Google Scholar 

  90. S.O. Paul and C.J.H. Schulte, Mikrochimica Acta (Wien) 1 (1988) 171.

    Google Scholar 

  91. S.O. Paul and C.J.H. Schutte, Spectrochimica Acta A46 (1990) 323.

    Google Scholar 

  92. J. Peinke, J. Parisi, O.E. Rössler and R. Stoop,Encounter with Chaos. Self Organized Hierarchical Complexity in Semiconductor Experiments (Springer, Berlin, 1992).

    Google Scholar 

  93. A. Perelomov,Generalized Coherent States and Their Applications (Springer, Berlin, 1986).

    Google Scholar 

  94. D. Petz and C. Sudár, Geometries of quantum states, Preprint (1995).

  95. P. Pfeifer, Chiral molecules — a superselection rule induced by the radiation field, Thesis ETHZürich No. 6551, ok Gotthard S + D AG, Zürich (1980).

  96. C. Piron,Foundations of Quantum Physics (Benjamin, New York, 1976).

    Google Scholar 

  97. M. Pirotta, F. Gi1ttler, H.-R. Gygax, A. Renn, J. Sepiol and U.P. Wild, Chem. Phys. Lett. 208 (1993) 379.

    Google Scholar 

  98. T. Plakhotnik, W.E. Moerner, V. Palm and U.P. Wild, Opt. Comm. 114 (1995) 83.

    Google Scholar 

  99. H. Primas,Chemistry, Quantum Mechanics, and Reductionism. Perspectives in Theoretical Chemistry (Springer, Berlin, 1983).

    Google Scholar 

  100. H. Primas, Induced nonlinear time evolution of open quantum objects, in:Sixty-two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics, ed. A. I. Miller (Plenum Press, New York, 1990) pp. 259–280.

    Google Scholar 

  101. H. Primas, The measurement process in the individual interpretation of quantum mechanics, in:Quantum Theory without Reduction, eds. M. Cini and J.-M. Levy-Leblond (IOP Publ., Bristol, 1990) pp. 49–68.

    Google Scholar 

  102. H. Primas, Necessary and sufficient conditions for an individual description of the measurement process,Symp. on the Foundations of Modern Physics 1990 — Quantum Theory of Measurement and Related Philosophical Problems, eds. P. Lahti and P. Mittelstaedt (World Scientific, Singapore, 1991) pp. 332–346.

    Google Scholar 

  103. H. Primas,Physikalische Chemie A, Course at the Swiss Federal Institute of Technology, Zürich (1994).

  104. M. Quack, Chem. Phys. Lett. 132 (1986) 147.

    Google Scholar 

  105. M. Quack, Angew. Chem. Int. Ed. Engl. 28 (1989) 571.

    Google Scholar 

  106. M. Quack, Die Symmetrie von Zeit und Raum und ihre Verletzung in molekularen Prozessen,Jahrbuch der Akademie der Wissenschaften zu Berlin 1990–1992 (1993).

  107. M. Quack, J. Mol. Struct. 292 (1993) 171.

    Google Scholar 

  108. M. Quack, Chem. Phys. Lett. 231 (1994) 421.

    Google Scholar 

  109. M. Quack, On the generation of superpositions of chiral amplitudes,and What is a molecular chirality, to appear in Faraday Disc. Chem. Soc. (1995).

  110. G. Raggio, States and composite systems in W*-algebraic quantum mechanics, Thesis ETHZürich No. 6824, ADAG AG, Zürich (1981).

  111. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. I: Functional Analysis (Academic Press, New York, 1972).

    Google Scholar 

  112. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV.: Analysis of Operators (Academic Press, New York, 1978).

    Google Scholar 

  113. P.D. Reilly and J.L. Skinner, Phys. Rev. Lett. 71 (1993) 4257.

    Google Scholar 

  114. P.M. Rentzepis and V.E. Bondybey, J. Chem. Phys. 80 (1984) 4727.

    Google Scholar 

  115. E.C. Reynhardt, Mol. Phys. 76 (1992) 525.

    Google Scholar 

  116. T. Sauter, W. Neuhauser, R. Blatt and P.E. Toschek, Phys. Rev. Lett. 57 (1986) 1696.

    Google Scholar 

  117. G.L. Sewell,Quantum Theory of Collective Phenomena (Clarendon Press, Oxford, 1986).

    Google Scholar 

  118. C. Sieiro, A. Sanchez, P. Crouigneau and C. Lamy, J. Chem. Soc. Perkin Trans. II (1982) 1069.

    Google Scholar 

  119. R. Silbey, Tunneling and relaxation in low temperature systems, in:Large-Scale Molecular Systems: Quantum and Stochastic Aspects, eds. W. Gans, A. Blumen and A. Amann (Plenum, London, 1991) pp. 147–152.

    Google Scholar 

  120. R. Silbey and R.A. Harris, J. Phys. Chem. 93 (1989) 7062.

    Google Scholar 

  121. P.B. Slater, Phys. Lett. A159 (1991) 411.

    Google Scholar 

  122. P. B. Slater, Phys. Lett. A163 (1992) 163.

    Google Scholar 

  123. H. Spohn, Models of statistical mechanics in one dimension originating from quantum ground states, in:Statistical Mechanics and Field Theory: Mathematical Aspects, eds. T.C. Dorlas Hugenholtz, N.M. and M. Winnink (Springer, Berlin, 1986).

    Google Scholar 

  124. H. Spohn, Commun. Math. Phys. 123 (1989) 277.

    Google Scholar 

  125. A. Stasiak and T. Koller, Analysis of DNA knots and catenanes allows to deduce the mechanism of action of enzymes which cut and join DNA strands, in:Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, Proc. NATO ASI on New Theoretical Concepts in Physical Chemistry, Maratea, Italy, 987, NATO ASI Series C235, eds. A. Amann, L. Cederbaum and W. Gans (Kluwer, Dordrecht, 1988) pp. 207–219.

    Google Scholar 

  126. F. Strocchi,Elements of Quantum Mechanics of Infinite Systems (World Scientific, Singapore, 1985).

    Google Scholar 

  127. D.W. Stroock and S.R.S. Varadhan,Multidimensional Diffusion Processes (Springer, Berlin, 1979).

    Google Scholar 

  128. D.W. Summers, Using knot theory to analyze DNA experiments, in:Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, Proc. NATO ASI on New Theoretical Concepts in Physical Chemistry,, Maratea, Italy, 198, NATO ASI Series C235, eds. A. Amann, L. Cederbaum and W. Gans (Kluwer, Dordrecht, 1988) pp. 221–232.

    Google Scholar 

  129. B.T. Sutcliffe, The concept of molecular structure, in:Theoretical Models of Chemical Bonding, Part 1: Atomic Hypothesis and the Concept of Molecular Structure, ed. Z.B. Maksiç (Springer, Berlin, 1990) pp. 1–28.

    Google Scholar 

  130. B.T. Sutcliffe, J. Mol. Struct. (Theochem) 259 (1992) 29.

    Google Scholar 

  131. M. Suzuki, Quantum Monte Carlo methods in equilibrium and nonequilibrium systems,Proc. Ninth Taniguchi Int. Symp. Susono, Japan,, 198 (Springer, Berlin, 1987).

    Google Scholar 

  132. M. Takesaki, Commun. Math. Phys. 17 (1970) 33.

    Google Scholar 

  133. W.G. Teich and G. Mahler, Phys. Rev. A45 (1992) 3300.

    Google Scholar 

  134. J.R. d. I. Vega, J.H. Busch, J.H. Schauble, K.L. Kunze and B.E. Haggert, J. Am. Chem. Soc. 104 (1982) 3295.

    Google Scholar 

  135. A.J. Vila, C. M. Lagier and A. C. Olivieri, J. Phys. Chem. 95 (1991) 5069.

    Google Scholar 

  136. M. Wächter, Zur Lokalisiering makroskopischer Systeme, Diplomarbeit ETH-Zürich, unpublished (1991).

  137. H. Walther, Phase transitions of stored laser-cooled ions, in:Fundamental Systems in Quantum Optics, Les Houches Session 53, eds. J. Dalibard, J.M. Raimond and J. Zinn-Justin (North-Holland, Amsterdam, 1992).

    Google Scholar 

  138. A. Wehrl, Rev. Mod. Phys. 50 (1978) 221.

    Google Scholar 

  139. S.J. Weininger, J. Chem. Ed. 61 (1984) 939.

    Google Scholar 

  140. A.S. Wightman and N. Glance, Nucl. Phys. B (Proc. Suppl.) 6 (1989) 202.

    Google Scholar 

  141. U.P. Wild, M. Croci, F. Güttler, M. Pirotta and A. Renn, J. Lumin. 60 & 61 (1994) 1003.

    Google Scholar 

  142. U.P. Wild, F. Güttler, M. Pirotta and A. Renn, Chem. Phys. Lett. 193 (1992) 451.

    Google Scholar 

  143. R.G. Woolley, Adv. Phys. 25 (1976) 27.

    Google Scholar 

  144. R.G. Woolley, J. Am. Chem. Soc. 100 (1978) 1073.

    Google Scholar 

  145. R.G. Woolley, Natural optical activity and the molecular hypothesis, in:Structures versus Special Properties (Springer, Berlin, Heidelberg, 1982) pp. 1–35.

    Google Scholar 

  146. R.G. Woolley, Chem. Phys. Lett. 125 (1986) 200.

    Google Scholar 

  147. R.G. Woolley, Must a molecule have a shape?, New Scientist (22 October 1988) 53.

  148. R.G. Woolley, Quantum theory and the molecular hypothesis, in:Molecules in Physics, Chemistry and Biology, Vol. 1, ed. J. Maruani (Kluwer, Dordrecht, 1988).

    Google Scholar 

  149. R.G. Woolley, J. Mol. Struct. (Theochem) 230 (1991) 17.

    Google Scholar 

  150. W. Zaoral, Towards a derivation of a non-linear stochastic Schrödinger equation, for the measurement process from algebraic quantum mechanics,Symp. on the Foundations of Modern Physics 1990 — Quantum Theory of Measurement and Related Philosophical Problems, eds. P. Lahti and P. Mittelstaedt (World Scientific, Singapore, 1991) pp. 479–486.

    Google Scholar 

  151. G. Zumofen, Personal communication (1995).

  152. G. Zumofen and J. Klafter, Chem. Phys. Lett. 219 (1994) 303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amann, A. Structure, dynamics and spectroscopy of single molecules: A challenge to quantum mechanics. J Math Chem 18, 247–308 (1995). https://doi.org/10.1007/BF01164662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164662

Keywords

Navigation