Skip to main content
Log in

Zoned Calc-Alkaline Plutons in Northeastern Kamchatka, Russia: Implications for the crustal growth in magmatic arcs

Zonierte kalk-alkalische Plutone im nardöstlichen Kamchatka, Russland: Hinweise auf Krusten Wachstum inmagmatischen Bögen

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Upper Cretaceous oceanic and island-arc terranes of Northeastern Kamchatka (Russia) are intruded by numerous ultramafic and mafic to intermediate plutons. Ultramafic plutons north of Epilchik Lake show a concentric structure: dunites in the core pass progressively outwards into wehrlites and pyroxenites and into gabbros along the rim which are occasionally phlogopite- and amphibole-bearing. Compositional layering and mineral orientations marked by spinel clusters in the dunites and by acicular amphiboles in the marginal gabbros are parallel to the contacts. The mafic to intermediate plutons studied in the Machevna area show similar concentric structure with a dioritic core and a gabbroic rim. Magmatic flow lines are near-vertical in the central part of the plutons. These internal structures and general geometry of the plutons suggest vertical magma intrusion into mega-tension gashes developed initially at a high angle to the subduction zone.

Olivine, pyroxenes, and plagioclase have primitive compositions. Al-rich, highpressure amphiboles are followed by Al-poor, low-pressure hornblendes. A two stage model of pluton crystallization and emplacement is proposed: initial crystallization and seggregation at the Moho level below the intraoceanic island are (approximately 22–25 km depth) and final emplacement followed by partial recycling of primary ultramafic cumulates and solidification at upper crustal levels (approximately 8–10 km depth). Emplacement of the arc plutons was accompanied by epidote amphibolite-facies contact metamorphism of host volcanic and pyroclastic rocks.

Major- and trace-element analyses of plutonic rocks indicate calc-alkaline affinities and emplacement in a primitive arc setting. The tectonic setting, age, and emplacement structures suggest that these plutons mark the change of geodynamic conditions from arc-related compression to local extension probably related to the initial stages of opening of the proto-Komandorsky basin. A two stage model for the crustal growth in magmatic arcs is proposed based on northeastern Kamchatka plutons. During stage I, primitive basaltic melts were emplaced along the crust-mantle boundary below the arc. Continuous fractionation and accumulation of olivine-rich cumulate rocks at the base of the growing island-arc crust resulted in production of evolved melt which was further emplaced in the upper arc crust. Crystal fractionation of a shallow, stage II magmatic reservoir below the active arc volcanoes resulted in formation of a significant amount of plutonic rocks and eruption of mafic to intermediate calc-alkaline lavas at the surface.

Zusammenfassung

Zahlreiche ultramafische, Bowie mafische bis intermediäre Plutone intrudieren die oberkretazischen ozeanischen und Inselbogen-Terrains in Nordost-Kamchatka (Russland). Ultramafische Plutone nördlich des Epilchik Lake zeigen eine konzentrische Struktur: Dunite im Kern gehen graduell in Wehrlite und Pyroxenite, und schließlich am Rand in Gabbros über, die gelegentlich Phlogopit und Amphibol führen. Lagenbau und Orientierung von Mineralkörnern sind durch Spinell-Kluster in den Duniten und durch nadelige Amphibole in den randlichen Gabbros gekennzeichnet und liegen parallel zu den Kontakten. Die mafischen bis intermediären Plutone in dem Machevna-Gebiet zeigen ähnliche konzentrische Strukturen mit einem dioritischen Kern und einem gabbroischen Rand. Magmatische Flußlinien Bind fast vertikal in den zentralen Teilen der Plutone. Diese internen Strukturen und die allgemeine Geometrie der Plutone legen es nahe, daß es sich hier um vertikale Magmen-Intrusion in Mega-Strukturen handelt, die sich ursprünglich in einem hohen Winkel zur Subduktionszone gebildet haben.

Olivine, Pyroxene und Plagioklase haben primitive Zusammensetzungen. Auf Alreiche Hochdruck-Amphibole folgen Al-arme Tiefdruck-Hornblenden. Ein Modell, das zwei Stadien der Pluton-Kristallisation und Platznahme vorsieht, wird vorgeschlagen: Ursprüngliche Kristallisation und Segregation im Moho-Niveau zwischen dem intraozeanischen Inselbogen (ungefähr 22–25 km Tiefe) und schließliche Platznahme gefolgt von teilweise Recycling primärer ultramafischer Kumulate und Verfestigung in oberen Krustenniveaus (ungefähr 8–10 km Tiefe). Die Platznahme der Bogen-Plutone war von Epidot-Amphibolit-Fazies Kontaktmetamorphose der intrudierten Vulkanite und Pyroklastite begleitet.

Haupt- und Spurenelement-Analysen der plutonischen Gesteine weisen auf kalkalkalischen Charakter und eine Platznahme in einem primitiven Insenbogensetting hin. Die tektonische Situation, das Alter und die Strukturen der Platznahme lassen erkennen, daß these Plutone den Wechsel in geodynamischen Bedingungen von Inselbogenbezogener Kompression zu lokaler Extension repräsentieren, Vorgänge die mit den initialen Stadien der Öffnung des proto-Komandorsky Beckens zusammenhängen. Auf der Basis der Plutone des nordöstlichen Kamchatka wird ein Modell des Krustenwachstums in magmatischen Bögen vorgeschlagen, das auf zwei Stadien beruht. Während des ersten Stadiums werden primitive basaltische Schmelzen längs der Kruste-MantelGrenze unter dem Bogen intrudiert. Andauernde Fraktionicrung und Akkumulation Olivin-reicher Kumulatgesteine an der Basis der wachsenden Inselbogenkruste resultiert dann in der Produktion einer entwickelten Schmelze die spdter in der Kruste des oberen Bogens Platz genommen hat. Kristallfraktionierung eines seichten magmatischen Reservoirs des zweiten Stadiums unter den aktiven Vulkanen des Bogens führte dann zur Bildung signifikanter Mengen plutonischer Gesteine und zur Eruption von mafischen bis intermediären kalk-alkalischen Laven an der Oberfläche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee AL, Ray L (1970) Correction factors for electron probe analysis of silicates, oxides, carbonates, phosphates, and sulfates. Anal Chem 42: 1409–1414

    Google Scholar 

  • Baranov BV, Seliverstov NI, Muraviev AV, Muzurov EL (1991) The Komandorsky Basin as a product of spreading behind a transform plate boundary. Tectonophysics 99: 237–269

    Google Scholar 

  • Bardintseff J-M, Bellon H, Bonin B, et al (1988) Tahiti Nui caldera (Society Archipelago, French Polynesia): a petrological, geochemical and mineralogical study. J Volcanol Geotherm Res 35: 31–55

    Google Scholar 

  • Batanova VG, Astrakhantsev OV (1992) Tectonic setting and genesis of island arc ultramaficmafic plutonic complexes from North Kamchatka. Abstracts of the 29th IGC, Kyoto, Japan 1: 133

  • Bellieni G, Pecceriilo A, Poli G (1981) The Vedrette di Ries (Reiserferner) plutonic complex: petrological and geochemical data bearing on its genesis. Contrib Mineral Petrol 78: 145–156

    Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76: 382–403

    Google Scholar 

  • Bogdanov NA (1988) Geology of the Komandorsky deep basin. J Phys Earth 36: 65–71

    Google Scholar 

  • Bogdanov NA, Fedorchuk AV (1987) Geochemistry of Cretaceous oceanic basalts of the Olutorski Range (Bering Sea). Ofioliti 12: 113–124

    Google Scholar 

  • Bogdanov NA, Kepezhinskas PK, Vishnevskaya VS, Sukhov AN, Fedorchuk AV (1987) Geology of the Southern Koryak Highland. Nauka Publishers, Moscow, 168p (in Russian)

    Google Scholar 

  • Brown GC (1982) Calc-alkaline intrusive rocks: their diversity, evolution and relation to volcanic arcs. In:Thorpe RS (ed) Orogenic andesites and related rocks. Wiley, New York, 437–461

    Google Scholar 

  • Brown GC, Thorpe RS, Webb PC (1984) The geochemical characteristics of granitoid in contrasting arcs and comments on magma sources. J Geol Soc London 141: 413–426

    Google Scholar 

  • Burns LE (1985) The Border Ranges ultramafic and mafic complex, southcentral Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22: 1020–1038

    Google Scholar 

  • Conrad WK, Kay R W (1984) Ultrarnafic and mafic inclusions from Adak Island: crystallization history and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol 25: 88–125

    Google Scholar 

  • Cooper AK, Marlow MS, Scholl DW, Stevenson AJ (1992) Evidence for Cenozoic crustal extension in the Bering Sea region. Tectonics 11: 719–731

    Google Scholar 

  • DeBari S (1992) Petrology and field relations of a lower- to upper-crustal section from a Jurassic island arc, Vancouver island, Canada. EOS 73: 642

    Google Scholar 

  • DeBari S, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94: 4373–4391

    Google Scholar 

  • Debon F, Le Fort P, Sheppard, SMF, Sonet J (1986) The four plutonic belts of the TranshimalayaHimalaya: a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. J Petrol 27: 219–250

    Google Scholar 

  • Defant MJ, Kepezhinskas PK, Drummond MS, Hochstaedter AG (1992) The association of high-Nb basalts and adakites with the subduction of young crust in Kamchatka, Russia: a possible origin. EOS 73: 644

    Google Scholar 

  • Elthon D (1987) Petrology of gabbroic rocks from the Mid-Cayman Rise spreading center. J Geophys Res 92: 658–682

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Berlin, Springer Heidelberg New York, 390p

    Google Scholar 

  • Hammarstrom J, Zen E-an (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71: 1297–1313

    Google Scholar 

  • Hochstaedter AG, Kepezhinskas PK, Defant MJ, Drummond MS, Bellon H (1993). Tectonic significance of Neogene volcanism in the northern Kamchatka. J Geol (in press)

  • Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calcalkaline plutons. Am Mineral 72: 231–239

    Google Scholar 

  • Kay SM, Kay RW (1985) Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc. Geology 13: 461–464

    Google Scholar 

  • Kay SM, Kay R W, Brueckner HK, Rubenstone JR (1983) Tholeiitic Aleutian arc plutonism: the Finger Bay pluton, Adak Island, Alaska. Contrib Mineral Petrol 82: 99–116

    Google Scholar 

  • Kelemen PB (1990) Reaction between ultramafic rock and fractionating basaltic magma, I, Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31: 51–98

    Google Scholar 

  • Kelemen PB, Ghiorso MS (1986) Assimilation of peridotite in zoned calc-alkaline plutonic complexes: evidence from the Big Jim complex, Washington Cascades. Contrib Mineral Petrol 94: 12–28

    Google Scholar 

  • itKepezhinskas PK (1990) Phlogopite-amphibole ultramafics from Machevna pluton (Koryak Highland): evidence for lamprophyric magmatism in the nascent arc. Izvestiya Vyschykh Uchebnykh Zavedeniy 7: 43–50 (in Russian)

    Google Scholar 

  • Kepezhinskas PK, Fedorchuk AV, Usova LV (1987) Orbicular gabbros from Olyutor Range (Koryak Highland). Pacific Geology 1: 127–129 (in Russian)

    Google Scholar 

  • Kepezhinskas PK, Gulko NI, Efremova LB (1990) Geochemistry of Late Cenozoic high-K volcanites of the Isthmus of Kamchatka. Geochem Int 27: 96–103

    Google Scholar 

  • Kepezhinskas PK, Efremova LB, Sorokina NA (1991) The REE in early island-arc plutonic complexes. Geochem Int 28: 87–95

    Google Scholar 

  • Kepezhinskas P, Reuber I, Tanaka H, Miyashita S (1992) Petrology of calc-alkaline plutons in North Kamchatka: implications for magma chamber evolution in primitive are settings. Abstracts of the 29th IGC, Kyoto, Japan 2: 514

  • Kepezhinskas PK, Taylor RN, Tanaka H (1993) Geochemistry of zoned spinels in North Kamchatka plutons: comparison with spinels from other tectonic settings. Mineralogical Magazine (in press)

  • LeBel L, Cocherie A, Baubron J-C, Fouillac AM, Hawkesworth CJ (1985) A high-K, mantlederived plutonic suite from “Linga”, near Arequipa, Peru. J Petrol 26: 124–149

    Google Scholar 

  • Maillet P, Monzier M, Lefevre C (1986) Petrology of Matthew and Hunter volcanoes, South New Hebrides island arc. J Volcanol Geotherm Res 30: 1–27

    Google Scholar 

  • Mezger K, Altherr R, Okrusch M, Henjes-Kunst F, Kreuzer H (1985) Genesis of acid/basic rock associations: a case study. The Kallithea intrusive complex, Samos, Greece. Contrib Mineral Petrol 90: 353–366

    Google Scholar 

  • Noyes HJ, Frey, FA, Wones DR (1983) A tale of two plutons: geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, Central Sierra Nevada, California. J Geol 91: 487–509

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983

    Google Scholar 

  • Perfit MR, Brueckner H, Lawrence JR, Kay R W (1980) Trace element and isotopic variations in a zoned pluton and associated volcanic rocks, Unalaska Island, Alaska: a model for fractionation in the Aleutian calc-alkaline suite. Contrib Mineral Petrol 73: 69–87

    Google Scholar 

  • Reuber J, Kepezhinskas PK, Bogdanov NA, Tanaka H, Miyashita S, Sobolev SF, Krasotov M Yu, Ledneva GV (1991) Geometry and structure of early arc plutons in NE Kamchatka (USSR). CR Acad Sci Paris 312: 289–294

    Google Scholar 

  • Rubenstone J (1984) The composition of early Tertiary submarine volcanic rocks of the Aleutian Islands, and their bearing on the development of the Aleutian Island arc. Thesis, Cornell University, Ithaca, New York, 222p

    Google Scholar 

  • Smith TE, Huang CH, Walawender MJ, Cheung P, Wheeler C (1983) The gabbroic rocks of the Peninsular Ranges batholith, Southern California: cumulate rocks associated with calc-alkaline basalts and andesites. J Volcanol Geotherm Res 18: 249–278

    Google Scholar 

  • Snoke A W, Sharp WD, Wright JE, Saleeby JB (1982) Significance of mid-Mesozoic peridotitic to dioritic intrusive complexes, Klamath Mountains—western Sierra Nevada, California. Geology 10: 160–166

    Google Scholar 

  • Stavsky AP, Chekhovitch VD, Kononov MV, Zonenshain LP (1990) Plate tectonics and palinspastic reconstructions of the Anadyr-Koryak region, Northeast USSR. Tectonics 9: 81–101

    Google Scholar 

  • Stephens WF, Whitley JE, Thirlwall MF, Halliday AN (1985) The Criffell zoned pluton: correlated behaviour of rare earth element abundances with isotopic systems. Contrib Mineral Petrol 89: 226–238

    Google Scholar 

  • Stewart DB, Arth JG, Flohr MJK (1988) Petrology and geochemistry of the South Penobscote intrusive suite, Maine. Am J Sci 288-A: 75–98

    Google Scholar 

  • Vennum WR, Rowley PD (1986) Reconnaissance geochemistry of the Lassiter Coast interusive suite, southern Antarctic Peninsula. Geol Soc Am Bull 97: 1521–1533

    Google Scholar 

  • Whalen JB (1985) Geochemistry of an island arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, P.N.G. J Petrol 26: 603–632

    Google Scholar 

  • Zinkevich VP, Konstantinovskaya EA, Magakyan R, Tsukanov NV (1990) Acrretionary structure of the Eastern Kamchatka. Rept. USSR Acad Sci 312: 1186–1190 (in Russian)

    Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a plate-tectonic synthesis. BM Page (Ed.), AGU Geodynamic Series 21

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kepezhinskas, P.K., Reuber, I., Tanaka, H. et al. Zoned Calc-Alkaline Plutons in Northeastern Kamchatka, Russia: Implications for the crustal growth in magmatic arcs. Mineralogy and Petrology 49, 147–174 (1993). https://doi.org/10.1007/BF01164592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164592

Keywords

Navigation