Skip to main content
Log in

Thermodynamics of (Fe2+, Mn2+, Mg, Ca)3− Al2Si3O12 garnet: a review and analysis

Eine kritische Zusammenstellung und Analyse der thermodynamischen Daten der (Fe2+, Mn2+, Mg, Ca)3Al2Si3O12 granate

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The thermodynamic properties of garnets in the system (Fe2+, Mn2+, Mg, Ca)3A12Si3O12 are reviewed. The thermodynamic properties of the three end-member garnets pyrope, almandine and grossular, including their volume, enthalpy of formation, entropy, compressibility and thermal expansion have been well determined. For spessartine enthalpy of formation and heat capacity at low temperatures are needed. Pyrope's unusual behavior in some of its properties is probably related to the presence of the small, light Mg cation, which has a large anisotropic thermal vibration. The thermodynamic mixing properties of the six binaries are also discussed. Good volume of mixing data exist now for all of the binaries, but much work is still required to determine the enthalpies and third-law vibrational entropies of mixing. It is shown that the magnitude of the positive deviations in the volumes of mixing is related to the volume difference between the two end-member components. It is probable that excess entropies, if present, originate at low temperatures below 200 K. Recent29Si NMR experiments have demonstrated the presence of short-range ordering (SRO) of Ca and Mg in pyrope-grossular solid solutions. Short-range order will have to be considered in new models describing the entropies of mixing. Its possible presence in all garnet solid solutions needs to be examined. The mixing properties of pyrope-grossular garnets, which are the best known for any garnet binary, can, in part, be described by the Quasi-Chemical approximation, which gives insight into the microscopic interactions which determine the macroscopic thermodynamic mixing properties. Microscopic properties are best investigated by spectroscopic and computational approaches. Hard mode IR measurements on binary solid solutions show that the range of local microscopic structural distortion is reflected in the macroscopic volumes of mixing. The nature of The contents of this contribution was presented at the IMA Meeting in Toronto in August, 1998. It precedes issues of “Mineralogy and Petrology” containing thematic sets of IMApapers strain tiields and site relaxation needs to be studied in order to obtain a better understanding of the solid-solution process and energetics in garnet. Critical areas for future experimentation are also addressed.[/p]

Zusammenfassung

In dieser Studie werden die thermodynamischen Eigenschaften der Granate im System (Fe2+,Mn2+, Mg, Ca)3Al2Si3O12 kritisch zusammengestellt. Die thermodynamischen Eigenschaften der drei Endglied-Granate Pyrop, Almandin und Grossular, einschließlich ihrer Volumina, Bildungswärmen, Entropien, Kompressibilitäten und thermischen Ausdehnungen wurden bereits hinreichend gut bestimmt. Dagegen müssen die Bildungswärme und Tieftemperatur-Wärmekapazität von Spessartin noch gemessen werden. Die Eigenschaften des Pyrops sind wahrscheinlich mit den großen anisotropen Schwingungen des kleinen, leichten Mg-Kations verbunden. Die thermodynamischen Mischungseigenschaften der sechs binären Mischkristallreihen werden ebenfalls diskutiert. Während die Mischungs-Volumendaten der binären Mischreihen gut bekannt sind, müssen ihre Mischungs-Enthalpien und Standard-Mischungsentropien noch ermittelt werden. Es wurde gezeigt, daß die Größe der positiven Exzeß-Volumina mit dem Volumen-Unterschied der zwei Endglied-Komponenten der jeweiligen Mischreihe verknüpft ist. Es ist wahrscheinlich, daß Exzeß-Entropien, wenn vorhanden, erst bei Tieftemperaturen unter 200 K auftreten. Neue29Si NMR-Experimente belegen, daß in Pyrop-Grossular-Mischkristallen Nahordnung von Mg und Ca vorliegt. Der Effekt der Nahordnung muß in künftigen thermodynamischen Modellen berücksichtigt werden. Hieraus ergibt sich die Notwendigkeit, alle Granat-Mischreihen auf mögliche Nahordnung hin zu untersuchen. Die Mischungseigenschaften der Pyrop-Grossular-Mischreihe, die von sämtlichen Granat-Mischreihen am besten bestimmt wurden, können teilweise mit dem Quasi-Chemical-Model beschrieben werden. Dieses Modell ermöglicht die Beschreibung der mikroskopischen Wechselwirkungen, die die makroskopischen thermodynamischen Eigenschaften bestimmen. Mikroskopische Eigenschaften werden am besten mit spektroskopischen Messungen und theoretischen Berechnungen untersucht. Hard-mode IR-Spektroskopie-Messungen an binären Mischreihen zeigen, daß die lokalen mikroskopischen strukturellen Verzerrungen in den makroskopischen Mischungs-Volumina widergespiegelt werden. Die Art der Spannungsfelder und Platz-Relaxationen muß detaillierter untersucht werden, um ein besseres Verständnis des Mischkristall-Bildungsprozsses und der Energetik der Granate zu erreichen. Darüber hinaus werden wichtige künftige Forschungsgebiete diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75: 3494–3500

    Google Scholar 

  • Anovitz LM, Essene EJ, Metz GW, Bohlen SR, Westrum EF Jr, Hemingway BS (1993) Heat capacity and phase equilibria of almandine, Fe3Al2Si3Ol2. Geochim Cosmochim Acta 57: 4191–4204

    Google Scholar 

  • Armbruster T, Geiger CA, Lager GA (1992) Single-crystal X-ray structure study of synthetic pyrope almandine garnets at 100 and 293 K. Am Mineral 77: 512–521

    Google Scholar 

  • Bass JD (1986) Elasticity of uvarovite and andradite garnets. J Geophys Res 91: 7505–7516

    Google Scholar 

  • Bass JD (1989) Elasticity of grossular and spessartite garnets by Brillouin spectroscopy. J Geophys Res 94: 7621–7628

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system N2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29: 445–522

    Google Scholar 

  • Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Am Mineral 75: 328–344

    Google Scholar 

  • Berman RG (unpublished) Thermodynamic update

  • Berman RG, Aranovich LY (1997) Optimized standard state and solution properties of minerals 1. Model calculations for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib Mineral Petrol 126: 1–24

    Google Scholar 

  • Boffa Ballaran T, Carpenter MA, Geiger CA, Koziol AM (1999) Local structural heterogeneity in garnet solid solutions. Phy Chem Mineral 26 (in press)

  • Born L, Zemann J (1964) Abstandsberechnungen und gitterenergetische Berechnungen an Granaten. Contrib Mineral Petrol 10: 2–23

    Google Scholar 

  • Bosenick A, Geiger CA (1997) Powder X-ray diffraction study of synthetic pyropegrossular garnets between 20 and 295 K: a comparison of thermal expansion and heat capacity and volumes of mixing. J Geophys Res 102: 22,649–22,657

    Google Scholar 

  • Bosenick A, Geiger CA, Schaller T, Sebald A (1995) A29Si MAS NMR and IR spectroscopic investigation of synthetic pyrope-grossular garnet solid solutions. Am Mineral 80: 691–704

    Google Scholar 

  • Bosenick A, Geiger CA, Cemic L (1996) Heat capacity measurements of synthetic pyropegrossular garnets between 320 and 1000 K by differential scanning calorimetry. Geochim Cosmochim Acta 60: 3215–3227

    Google Scholar 

  • Bosenick A, Geiger CA, Phillips BL (1999) Local Ca-Mg distribution of Mg-rich pyropegrossular garnets synthesized at different temperatures revealed by29Si NMR MAS spectroscopy. Am Mineral 84 (in press)Bosenick A, Dove MT, Meyers E, Hammonds K, Geiger CA (1999) Simulation studies of

  • Bratkovsky AM, Heine V, Salje E (1996) Strain effects, particularly in phase transitions. Phil Trans Royal Soc Lond A 354: 2875–2896

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1975) Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry. Geochim Cosmochim Acta 39: 1487–1497

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1978) Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochim Cosmochim Acta 42: 367–375

    Google Scholar 

  • Chatillon-Colinet C, Kleppa OJ, Newton RC, Perkins D III (1983) Enthalpy of formation of Fe3Al2Si3O12 (almandine) by high temperature alkali borate solution calorimetry. Geochim Cosmochim Acta 47: 439–444

    Google Scholar 

  • Cressey G (1981) Entropies and enthalpies of alumosilicate garnets. Contrib Mineral Petrol 76: 413–419

    Google Scholar 

  • Cressey G, Schmid R, Wood BJ (1978) Thermodynamic properties of almandine-grossular garnet solid solutions. Contrib Mineral Petrol 67: 397–404

    Google Scholar 

  • Davies PIK, Navrotsky A (1983) Quantitative correlations of deviations from ideality in binary and pseudobinary solid solutions. J Solid State Chem 46: 1–22

    Google Scholar 

  • Delany JM (1981) A spectral and thermodynamic investigation of synthetic pyropegrossular garnets. Thesis, University of California, Los Angeles 186 p

    Google Scholar 

  • Ferreira LG, Mbaye AA, Zunger A (1988) Chemical and elastic effects on isostructural phase diagrams: the E-G approach. Phys Rev B 37: 10547–10570

    Google Scholar 

  • Fei Y, Saxena SK, Eriksson G (1986) Some binary and ternary silicate solutions models. Contrib Mineral Petrol 94: 221–229

    Google Scholar 

  • Ganguly J, Kennedy GC (1974) The energetics of natural garnet solid solutions 1. Mixing of the aluminosilicate end-members. Contrib Mineral Petrol 48: 137–148

    Google Scholar 

  • Ganguly J, Saxena SK (1984) Mixing properties of alumosilicate garnets: constraints from natural and experimental data, and applications to geothermobarometry. Am Mineral 69: 88–97

    Google Scholar 

  • Ganguly J, Cheng W, O'Neill HStC (1993) Synthesis, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties. Am Mineral 78: 583–593

    Google Scholar 

  • Ganguly J, Cheng W, Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contrib Mineral Petrol 126: 137–151

    Google Scholar 

  • Gasparik T (1984) Experimentally determined stability of clinopyroxene + garnet + corundum in the system CaO-MgO-Al2O3-SiO2. Am Mineral 69: 1025–1035

    Google Scholar 

  • Gasparik T (1994) A petrogenetic grid for the system MgO-Al2O3-SiO2. J Geol 102: 97–109

    Google Scholar 

  • Geiger CA (1998) A powder infrared spectroscopic investigation of garnet binaries in the system Mg3Al2Si3O12-Fe3Al2Si3O12-Mn3Al2Si3O12-Ca3Al2Si3O12. Eurv J Mineral 10: 407–422

    Google Scholar 

  • Geiger CA (1999) Volumes of mixing in aluminosilicate garnets: implications for solid solution and strain behavior. Am Mineral (in press)

  • Geiger CA, Rossman GR (1994) Crystal field stabilization energies of almandine-pyrope and almandine-spessartine garnets determined by FTIR near infrared measurements. Phy Chem Mineral 21: 516–525

    Google Scholar 

  • Geiger CA, Feenstra A (1997) Molar volumes of mixing of almandine-pyrope and almandine-spessartine garnets and the crystal chemistry and thermodynamic mixing properties of the aluminosilicate garnets. Am Mineral 82: 571–581

    Google Scholar 

  • Geiger CA, Armbruster T (1997) Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet: structural dynamic and thermodynamic properties. Am Mineral 82: 710–718

    Google Scholar 

  • Geiger CA, Newton RC, Kleppa OJ (1987) Enthalpy of mixing of synthetic almandinegrossular and almandine-pyrope garnets from high-temperature solution calorimetry. Geochim Cosmochim Acta 51: 1755–1763

    Google Scholar 

  • Geiger CA, Langer K, Winkler B, Cemic L (1988) The synthesis, characterization and physical properties of end-member garnets in the system (Fe,Mg,Ca,Mn)3Al2(SiO4)3. In:Vollstlidt H (ed) High pressure geosciences and material synthesis. AkademieVerlag, Berlin, pp 193–198

    Google Scholar 

  • Geiger CA, Lottermoser W, Amthauer G (1990) A temperature dependent57Fe Mössbauer study of synthetic almandine-grossular and almandine-pyrope garnets: a comparison. Third International Symposium of Experimental Mineralogy, Petrology and Geochemistry, Edinburgh, U.K., p 11

  • Geiger CA, Langer K, Bell DR, Rossman GR, Winkler B (1991) The hydroxide component in synthetic pyrope. Am Mineral 76: 49–59

    Google Scholar 

  • Geiger CA, Merwin L, Sebald A (1992) Structural investigation of pyrope garnet using temperature-dependent FTIR and29Si and27Al MAS NMR spectroscopy. Am Mineral 77: 713–717

    Google Scholar 

  • Gottschalk M (1997) Internally consistent thermodynamic data for rock-forming minerals in the system SiO2-TiO2-Al2O3-Fe2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2. Eur J Mineral 9: 175–223

    Google Scholar 

  • Guggenheim EA (1952) Mixtures. Clarendon Press, Oxford, 270 pp

    Google Scholar 

  • Hackler RT, Wood BJ (1989) Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe-Mg mixing properties in garnet. Am Mineral 74: 994–999

    Google Scholar 

  • Haselton HT (1979) Calorimetry of synthetic pyrope-grossular garnets and calculated stability relations. Thesis, University of Chicago

  • Haselton HT, Newton RC (1980) Thermodynamics of pyrope-grossular garnets and their stabilities at high temperatures and high pressures. J Geophys Res 85: 6973–6982

    Google Scholar 

  • Haselton HT Jr, Westrum EF Jr (1980) Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60grossular40. Geochim Cosmochim Acta 44: 701–709

    Google Scholar 

  • Hensen BJ, Schmid R, Wood BJ (1975) Activity-composition relationships for pyropegrossular garnet. Contrib Mineral Petrol 51: 161–166

    Google Scholar 

  • Hildebrand JH, Prausnitz JM, Scott RL (1970) Regular and related solutions. Van Nostrand Rheinhold New York, 228 pp

    Google Scholar 

  • Hofmeister AM, Chopelas A (1991) Thermodynamic properties of pyrope and grossular from vibrational spectroscopy. Am Mineral 76: 880–891

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Met Geol 16: 309–343

    Google Scholar 

  • Hsu LC (1968) Selected phase relationships in the system Al-Mn-Fe-Si-O-H: a model for garnet equilibria. J Petrol 9: 40–83

    Google Scholar 

  • Kieffér SW (1980) Thermodynamics and lattice vibrations of minerals. 4. Application to chain and sheet silicates and orthosilicates. Rev Geophy Space Phys 18: 862–886

    Google Scholar 

  • Kleppa OJ (1976) Mineralogical applications of high-temperature reaction calorimetry. In: Proceedings of the NATO Advanced Study Institute, Newcastle, England. John Wiley, London, pp 369–387

    Google Scholar 

  • Kolesnik Yu N, Nogteva VV, Paukov IYe (1977) The specific heat of pyrope at 13–300 °K and the thermodynamic parameters of some natural varieties of garnet. Geokhimiya 4: 533–541

    Google Scholar 

  • Kolesnik Yu N, Nogteva VV, Arkhipenko DK, Orekhov BA, Paukov IYe (1979) Thermodynamics of pyrope-grossular solid solutions and the specific heat of grossular at 13-300 K. Geochem 79: 57–64

    Google Scholar 

  • Kolesov B, Geiger CA (1998) Raman spectroscopy of silicate garnets. Phys Chem Mineral 25: 142–151

    Google Scholar 

  • Koziol A (1990) Activity-composition relationships of binary Ca-Fe and Ca-Mn garnets determined by reversed, displaced equilibrium experiments. Am Mineral 75: 319–327

    Google Scholar 

  • Koziol AM, Newton RC (1989) Grossular activity-composition relationships in ternary garnets determined by reversed displaced-equilibrium experiments. Contrib Mineral Petrol 103: 423–433

    Google Scholar 

  • Koziol AM, Bohlen SR (1992) Solution properties of almandine-pyrope garnet by phase equilibrium experiments. Am Mineral 77: 65–773

    Google Scholar 

  • Krupka KM, Robie RA, Hemingway BS (1979) High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8, grossular and NaAlSi3O8 glass. Am Mineral 64: 86–101

    Google Scholar 

  • Martins JL, Zunger A (1984) Bond lengths around isovalent impurities and in semiconductor solid solutions. Phys Rev B 30: 6217–6220

    Google Scholar 

  • Mikkelsen JC, Boyce JB (1983) Extended X-ray absorption fine structure study of Ga1-xlnxAs random solid solutions. Phys Rev B 28(12): 7130–7140

    Google Scholar 

  • Mukhopadhyay B, Holdaway MJ, Koziol AM (1997) A statistical model of thermodynamic mixing properties of Ca-Mg-Fe2+ garnets. Am Mineral 82: 165–181

    Google Scholar 

  • Murad E, Wagner FE (1987) The Mössbauer spectrum of almandine. Phys Chem Mineral 14: 264–296

    Google Scholar 

  • Newton RC, Thompson AB, Krupka KM (1977a) Heat capacity of synthetic Mg3Al2Si3O12 from 350 to 1000 K and the entropy of pyrope. EOS 58: 523

    Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1977b) Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim Cosmochim Acta 41: 369–377

    Google Scholar 

  • Olijnyk H, Paris E, Geiger CA, Lager GA, (1991) Compression study of katoite [Ca3Al2(O4H4)3] and grossular garnet. J Geophys Res 96: 14313–14318

    Google Scholar 

  • O'Neill B, Bass JD, Rossman GR, Geiger CA, Langer K (1991) Elastic properties of pyrope. Phys Chem Mineral 17: 617–621

    Google Scholar 

  • Ottonello G, Bokreta M, Sciuto PF (1996) Parameterization of energy and interactions in garnets: end-member properties. Am Mineral 81: 429–447

    Google Scholar 

  • Pattison DRM (1994) Are reversed Fe-Mg exchange and solid solution experiments really reversed? Am Mineral 79: 938–950

    Google Scholar 

  • Pavese A, Artioli G, Prencipe M (1995) X-ray single-crystal diffraction study of pyrope in the temperature range 30-973 K. Am Mineral 80: 457–464

    Google Scholar 

  • Pawley AR, Redfern SAT, Holland TJB (1996) Volume behavior of hydrous minerals at high pressure and temperature. 1. Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore. Am Mineral 81: 335–340

    Google Scholar 

  • Robie RA, Hemingway BS (1972) Calorimeters for heat of solution and low-temperature heat capacity measurements. Geol Sur Prof Pap no. 755, 32 pp

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15K and 1 bar (105 Pascals) pressure and at higher temperatures. Bull US Geol Sur 1452: 456 pp

    Google Scholar 

  • Robie RA, Bin Z, Hemingway BS, Barton MD (1987) Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for ΔfG 0m (298.15 K) of hedenbergite and wollastonite. Geochim Cosmochim Acta 51: 2219–2224

    Google Scholar 

  • Rodehorst U, Geiger CA, Armbruster T (1999) The crystal structures of synthetic grossular and spessartine between 100 and 600 K and the crystal chemistry of grossularspessartine solid solutions (in preparation)

  • von Saldern JC (1994) Messungen thermodynamischer Eigenschaften im System PyropSpessartin. Thesis, University of Kiel, 90 pp

  • Skinner BJ (1956) Physical properties of end-members of the garnet group. Am Mineral 41: 428–436

    Google Scholar 

  • Srivastava GP, Martins JL, Zunger A (1985) Atomic structure and ordering in semiconductor alloys. Phys Rev B 31: 2561–2564

    Google Scholar 

  • Tequi C, Robie RA, Hemingway BS, Neuville DR, Richet P (1991) Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12). Geochim Cosmochim Acta 55: 1005–1010

    Google Scholar 

  • Ungaretti L, Leona M, Merli M, Oberti R (1995) Non-ideal solid-solution in garnet: crystalstructure evidence and modelling. Eur J Mineral 7: 1299–1312

    Google Scholar 

  • Watanabe H (1982) Thermochemical properties of synthetic high-pressure compounds relevant to the earth's mantle. In:Akimoto S, Manghnani M (eds) High-pressure research in geophysics. Reidel, Boston, pp 441–464

    Google Scholar 

  • Westrum EF Jr, Essene EJ, Perkins D III (1979) Thermophysical properties of the garnet, Grossular: Ca3Al2Si3O12. J Chem Thermo 11: 57–66

    Google Scholar 

  • Wood BJ (1988) Activity measurements and excess entropy-volume relationships for pyrope-grossular garnets. J Geol 96: 721–729

    Google Scholar 

  • Wood BJ, Hackler RT, Dobson DP (1994) Experimental determination of Mn-Mg mixing properties in garnet, olivine and oxide. Contrib Mineral Petrol 115: 438–448

    Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A, Geiger CA (1999) Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures. Phy Chem Mineral 26 (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, C.A. Thermodynamics of (Fe2+, Mn2+, Mg, Ca)3− Al2Si3O12 garnet: a review and analysis. Mineralogy and Petrology 66, 271–299 (1999). https://doi.org/10.1007/BF01164497

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164497

Keywords

Navigation