Skip to main content
Log in

Wollastonite formation during variscan post-tectonic cooling in the Schwarzwald, Germany

Die bildung von wollastonit während der variskischen abkühlung im Schwarzwald, Deutschland

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Metaquartzdioritic plagioclase-biotite-quartz-gneiss at Artenberg, Schwarzwald, Germany, contains up to 10 cm wide calcite veins partially replaced and surrounded by a zoned calcsilicate sequence. The calcsilicate veins consist of two parts: (a) a zoned mineral sequence of reaction products deposited in the vein itself (wollastonite, garnet, clinopyroxene, quartz with relics of calcite) and (b) a zoned alteration sequence in the wall rock gneiss extending from the vein-gneiss contact several cm into the plagioclase-bearing gneiss (hornblende, chlorite). Based on hornblende-plagioclase thermobarometry and on chlorite stability, the P-T conditions of calcsilicate formation are estimated to be about 450 °C at c. 2 kbar.

The zoned mineral sequence formed by a bi-metasomatic reaction in an open system of the hydrothermal carbonate with the orthogneiss in the presence of an externally derived fluid. The reaction was started by H2O and SiO2 infiltration along the vein-gneiss contact. The stability of wollastonite at the above P-T conditions records an XCO 2, of the fluid phase below 0.05. Chemical potential gradients of Ca, Al, Fe, Mg and probably Si between vein and gneiss resulted in diffusional mass transfer perpendicular to the vein-gneiss contact. The sequence of stable calcsilicate minerals suggests Ca diffusion from vein to gneiss, while Fe, Mg and Al were transported in the opposite direction, from gneiss to vein. It is inferred that the calcsilicates formed during Variscan post-tectonic cooling.

Zusammenfassung

Metaquarzdioritische Plagioklas-Biotit-Quarz-Gneise vom Steinbruch Artenberg bei Steinach, Schwarzwald, enthalten etwa 10 cm breite Calcit-Gänge, die von einer zonierten Kalksilikat-Vergesellschaftung teilweise ersetzt und umrandet werden. Die Kalksilikat-Gänge bestehen dann aus zwei Teilen: (a) eine zonierte Mineralsequenz aus Reaktionsprodukten im Gang selbst (Wollastonit, Granat, Klinopyroxen, Quarz mit Relikten von Calcit) und (b) eine zonierte Alterationssequenz im Nebengesteins-Gneis, die vom Gang-Gneis-Kontakt einige Zentimeter in den Gneis hinein reicht (Hornblende, Chlorit). Hornblende-Plagioklas-Thermobarometrie und Chlorit-Stabilität zeigen P-T Bedingungen während der Kalksilikat-Bildung von etwa 2 kbar und 450 °C an.

Die zonierte Mineralsequenz bildete sich bei der bi-metasomatischen Reaktion in einem offenen System von hydrothermalem Gangkarbonat mit dem Orthogneis in der Anwesenheit eines externen Fluids. Die Reaktion begann durch die Infiltration von H2O und SiO2 entlang des Gang-Gneis-Kontaktes. Die Stabilität von Wollastonit bei den obigen P-T-Bedingungen zeigt, daß die Fluidphase weniger als 5 Mol-% CO2 enthielt. Chemische Potential-Gradienten von Ca, Al, Fe, Mg und möglicherweise Si führten zu diffusivem Elementtransport senkrecht zum Gang-Gneis-Kontakt. Die Abfolge der Kalksilikat-Vergesellschaftungen zeigt, daß Ca vom Gang zum Gneis, Fe, Mg und Al dagegen in umgekehrter Richtung diffundierten. Die Kalksilikate bildeten sich wahrscheinlich während der posttektonischen Abkühlung in der Folge der variskischen Orogenese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29: 445–522

    Google Scholar 

  • Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Am Mineral 75: 328-344 Blundy JD, Holland TJ (1990) Calcic amphibole equilibria and a new amphiboleplagioclase geothermometer. Contrib Mineral Petrol 104: 208–224

    Google Scholar 

  • Bohlen SR, Valley JW, Essene EJ (1985) Metamorphism in the Adirondacks. I. Petrology, pressure and temperature. J Petrol 26: 971–992

    Google Scholar 

  • Bucher K, Frey M (1994) Petrogenesis of metamorphic rocks. Springer, Berlin Heidelberg New York Tokyo, 318 pp

    Google Scholar 

  • Buick IS, Cartwright I, Williams IS (1997) High-temperature retrogression of granulitefacies marbles from the Reynolds Range Group, Central Australia: phase equilibria, isotopic resetting and fluid fluxes. J Petrol 38: 877–910

    Google Scholar 

  • Cartwright I, Buick IS (1995) Formation of wollastonite-bearing marbles during late regional metamorphic channelled fluid flow in the upper calcsilicate unit of the Reynolds Range Group, central Australia. J Metam Geol 13: 397–417

    Google Scholar 

  • Davis SR, Ferry JM (1993) Fluid infiltration during contact metamorphism of interbedded marble and calcsilicate hornfels. J Metam Geol 11: 71–88

    Google Scholar 

  • Ferry JM (1996) Prograde and retrograde fluid flow during contact metamorphism of siliceous carbonate rocks from the Ballachulish aureole, Scotland. Contrib Mineral Petrol 124: 235–254

    Google Scholar 

  • Fisher GW (1973) Non-equilibrium thermodynamics as a model for diffusion controlled metamorphic processes. Am J Sci 273: 897–924

    Google Scholar 

  • Fisher GW (1975) The thermodynamics of diffusion controlled metamorphic processes. In:Cooper AR, Heuer AH (eds) Mass transport phenomena in ceramics. Plenum Press, New York, pp 111–122

    Google Scholar 

  • Fisher GW (1977) Non-equilibrium thermodynamics in metamorphism. In:Fraser DG (ed) Thermodynamics in geology. Reidel, Boston, pp 381–403

    Google Scholar 

  • Fuhrman M, Lindsley D (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73: 201–215

    Google Scholar 

  • Gerdes ML, Valley JW (1994) Fluid flow and mass transport at the Valentine wollastonite deposit, Adirondack Mountains, New York State. J Metam Geol 12: 589–608

    Google Scholar 

  • Glassley WE (1975) High grade regional metamorphism of some carbonate bodies: significance for the orthopyroxene isograd. Am J Sci 275: 1133–1163

    Google Scholar 

  • Haar C, Gallagher JS, Kell GS (1984) NBS/NRC Steam tables: thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Hemisphere, Washington

    Google Scholar 

  • Harley SL, Buick IS (1992) Wollastonite-scapolite assemblages as indicators of granulite pressure-temperature-fluid histories: the Rauer Group, east Antarctica. J Petrol 33: 693–728

    Google Scholar 

  • Hofmann AW, Köhler H (1973) Whole rock Rb-Sr ages of anatectic gneisses from the Schwarzwald, SW Germany. N Jb Min Abh 119: 163–187

    Google Scholar 

  • Holland TJ, Blundy JB (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116: 433–447

    Google Scholar 

  • Jamtveit B, Bucher-Nurminen K, Stijfhoorn DE (1992) Contact metamorphism of layered shale-carbonate sequences in the Oslo Rift. I. Buffering, infiltration, and the mechanisms of mass transport. J Petrol 33: 377–422

    Google Scholar 

  • Joesten R (1974) Local equilibrium and metasomatic growth of zoned calc-silicate nodules from a contact aureole, Christmas Mountains, Big Bend region, Texas. Am J Sci 274: 876–901

    Google Scholar 

  • Joesten R (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochim Cosmochim Acta 41: 649–670

    Google Scholar 

  • Kalt A, Grauert B, Baumann A (1994a) Rb-Sr and U-Pb isotope studies on migmatites from the Schwarzwald (Germany); constraints on isotopic resetting during Variscan hightemperature metamorphism. J Metam Geol 12: 667–680

    Google Scholar 

  • Kalt A, Hanel M, Schleicher H, Kramm U (1994b) Petrology and geochronology of eclogites from the Variscan Schwarzwald (F.R.G.). Contrib Mineral Petrol 115: 287–302

    Google Scholar 

  • Kerrick DM, Jacobs GK (1981) A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures. Am J Sci 281: 735–767

    Google Scholar 

  • Kohn MJ.Spear FS (1990) Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. Am Mineral 75: 89–96

    Google Scholar 

  • Lieberman J, Petrakakis K (1991) TWEEQU thermobarometry; analysis of uncertainties and applications to granulites from western Alaska and Austria. Can Mineral 29: 857–887

    Google Scholar 

  • Nabelek PI, Labotka TC, O'Neil JR, Papike JJ (1984) Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestones in western Utah: evidence from stable isotope and phase assemblages. Contrib Mineral Petrol 86: 25–34

    Google Scholar 

  • Piazolo S, Markl G (1999) Humite- and scapolite-bearing assemblages in marbles and calcsilicates of Dronning Maud Land, Antarctica and their implications on Gondwana reconstructions. J Metam Geol 17: 91–107

    Google Scholar 

  • Platz D (1867) Wollastonit and Prehnit im Schwarzwald. N Jahrb Mineral 12: 340–341

    Google Scholar 

  • Pouchou JL, Pichior F (1984) A new model for quantitative analysis. I. Application to the analysis of homogeneous samples. Rech Aérosp 3: 13–38

    Google Scholar 

  • Pouchou JL, Pichior F (1985) ‘PAP’ f(rZ) procedure for improved quantitative analysis. Microbeam Anal 1: 104–106

    Google Scholar 

  • Rosenbusch H (1903) Studien im Gneisgebirge des Schwarzwaldes. II. Die Kalksilikatfelse in Rench- and Kinzigitgneis. Mitt großherz bad geol Landesanst 4: 380–385

    Google Scholar 

  • Satïsh-Ktunar M, Santosh M, Yoshida M (1996) Wollastonite from calcsilicates of the Kerala Khondalite belt, southern India: changing fluid regimes during deep crustal metamorphism. Curr Sci 68: 813–819

    Google Scholar 

  • Schalch F, Sauer A (1903) Erläuterungen zur geol. Spezialkarte des Großherzogthums Baden, Blatt 109 (Furtwangen). C Winter, Heidelberg, 75pp

    Google Scholar 

  • Schumacher JC (1991) Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers. Mineral Mag 55: 3–18

    Google Scholar 

  • Shaw RK, Arima M (1996) High-temperature metamorphic imprint on calcsilicate granulites of Rayagada, Eastern Ghats, India: implications for the isobaric cooling path. Contrib Mineral Petrol 126: 169–180

    Google Scholar 

  • Spear FS (1995) Metamorphic phase equilibria and pressure-temperature-time paths. Min Soc Am Monogr, Washington, 799 pp

    Google Scholar 

  • Thompson JB (1959) Local equilibrium in metasomatic processes. In:Abelson PH (ed) Researches in geochemistry. John Wiley, New York, pp 427–457

    Google Scholar 

  • Valley JW (1985) Polymetamorphism in the Adirondacks: wollastonite at contacts of shallowly intruded anorthosite. In:Tobi AC, Touret JL (eds) The Deep Proterozoic crust in the North Atlantic Provinces. Reidel, Dordrecht, pp 217–236

    Google Scholar 

  • Waldeck H (1970) Der Steinbruch am Artenberg bei Steinach i.K. (Schwarzwald) — eine petrographisch-mineralogische Betrachtung. N Jahrb Mineral Monatsh 124: 420–431

    Google Scholar 

  • Warren RG, Hensen BJ, Ryburn RJ (1987) Wollastonite and scapolite in Precambrian calcsilicate granulites from Australia and Antarctica. J Metam Geol 5: 213–223

    Google Scholar 

  • Wimmenauer W, Stenger R (1989) Acid and intermediate HP metamorphic rocks in the Schwarzwald (Federal Republic of Germany). Tectonophysics 157: 109–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markl, G. Wollastonite formation during variscan post-tectonic cooling in the Schwarzwald, Germany. Mineralogy and Petrology 66, 193–213 (1999). https://doi.org/10.1007/BF01164493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164493

Keywords

Navigation