Advertisement

Boundary value problem for nonlinear parabolic equations of infinite order in Sobolev-Orlicz spaces

  • Nguen Min' Chyong
  • Le Kuang Chung
  • Khuat Van Nin'
Article
  • 38 Downloads

Keywords

Parabolic Equation Nonlinear Parabolic Equation Infinite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. I. Vishik, “Solvability of boundary value problems for quasilinear parabolic equations,” Mat. Sb.,59, No. 101, 289–325 (1962).Google Scholar
  2. 2.
    J. L. Lions, Certain Methods for Solving Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).Google Scholar
  3. 3.
    Yu. A. Dubinskii, “Quasilinear elliptic and parabolic equations of arbitrary order,” Usp. Mat. Nauk,23, No. 1, 45–90 (1968).Google Scholar
  4. 4.
    F. E. Browder, “Strongly nonlinear parabolic boundary value problems,” Am. J. Math.,86, No. 2, 339–357 (1964).Google Scholar
  5. 5.
    T. Donaldson, “Inhomogeneous Orlicz—Sobolev spaces and nonlinear parabolic initial value problems,” J. Diff. Eq.,16, No. 2, 201–256 (1974).Google Scholar
  6. 6.
    M. A. Krasnosel'skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces [in Russian], Nauka, Moscow (1958).Google Scholar
  7. 7.
    Chan Dyk Van, “Nontriviality of the Sobolev-Orlicz space of infinite order in a bounded domain of an Euclidean space,”, Dokl. Akad. Nauk SSSR,250, No. 6, 1331–1334 (1980).Google Scholar
  8. 8.
    S. G. Mikhlin, Linear Partial Differential Equations [in Russian], Nauka, Moscow (1977).Google Scholar
  9. 9.
    Yu. A. Dubinskii (Ju. A. Dubinskii), Sobolev Spaces of Infinite Order and Differential Equations, Reidel, Dordrecht-Boston-Lancaster-Tokyo (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Nguen Min' Chyong
    • 1
  • Le Kuang Chung
    • 1
  • Khuat Van Nin'
    • 1
  1. 1.Institute of MathematicsHanoi

Personalised recommendations