Skip to main content
Log in

An application of geodesic modeling of second-order differential equations

  • Published:
Mathematical notes of the Academy of Sciences of the USSR Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Ya. L. Shapiro and V. A. Igoshin, “Homomorphisms of quasigeodesic flows,” in: Seventh All-Union Conference on Modern Problems of Geometry [in Russian], Belorussian State Univ., Minsk (1979), p. 224.

    Google Scholar 

  2. Ya. L. Shapiro and V. A. Igoshin, “Homomorphisms of quasigeodesic flows,” Dokl. Akad. Nauk SSSR,252, No. 2, 303–306 (1980).

    Google Scholar 

  3. Ya. L. Shapiro, “On a quasigeodesic mapping,” Izv. Vyssh. Uehebn. Zaved., Mat., No. 9, 53–55 (1980).

    Google Scholar 

  4. Ya. L. Shapiro and V. A. Igoshin, “Mappings preserving the trajectories of geodesic flows,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 72–79 (1983).

    Google Scholar 

  5. Ya. L. Shapiro, V. A. Igoshin and E. I. Yakovlev, “Morphisms of differential equations of the second order and of second degree,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 80–82 (1984).

    Google Scholar 

  6. Ya. L. Shapiro, V. A. Igoshin, and E. I. Yakovlev, “Some geodesic models and an expansion theorem for differential equations of the second order and of second degree,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 74–76 (1983).

    Google Scholar 

  7. T. Levi-Civita, “Sulle transformazioni delle equazioni dinamische,” Ann. Mat. Pure Appl., Ser. 2,24, 255–300 (1896).

    Google Scholar 

  8. T. Levi-Civita, “Sur une transformation de la fonction lagrangienne qui n'altere pas les trajektores,” Mat. Sb.,1 (43), No. 1, 123–125 (1936).

    Google Scholar 

  9. A. S. Solodovnikov, “Projective transformations of Riemannian spaces,” Usp. Mat. Nauk,11, No. 4(70), 45–116 (1956).

    Google Scholar 

  10. A. Z. Petrov, “On modeling the paths of experimental bodies in a gravitational field,” Dokl. Akad. Nauk SSSR,186, No. 6, 1302–1305 (1969).

    Google Scholar 

  11. A. Z. Petrov, “On the problem of modeling of gravitational fields,” Preprint, ITF-71-130P, Kiev (1971).

  12. Th. Kaluza, “Zum Unitätsproblem der Physik,” S. B. Berlin Acad. Wiss., 966–972 (1921).

  13. O. Veblen, Projective Relativitätstheorie, Springer-Verlag, Berlin (1933).

    Google Scholar 

  14. Albert Einstein and the Theory of Gravitation, Collected Papers, Mir, Moscow (1979).

  15. O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie,” Z. Physik,37, No. 12, 895–906 (1926).

    Google Scholar 

  16. O. Klein, “Zur fünfdimensionalen Darstellung der Relativitätstheorie,” Z. Physik,46, Nos. 3–4, 188–208 (1928).

    Google Scholar 

  17. V. Fock, “Über die invariante Form der Wellen und der Bewegungsgleichungen für einen geladenen Massenpunkt,” Z. Physik,39, Nos. 2–3, 226–232 (1926).

    Google Scholar 

  18. A. P. Kotel'nikov and V. A. Fok, Some Applications of the Ideas of Lobachevskii in Mechanics and Physics [in Russian], GTTI, Moscow-Leningrad (1950).

    Google Scholar 

  19. Yu. B. Rumer, Research on 5-Optics [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  20. N. P. Konopleva and V. N. Popov, Gauge Fields [in Russian], Atomizdat, Moscow (1972).

    Google Scholar 

  21. H. Hertz, The Principles of Mechanics, explained in a new Connection [Russian translation], Izd. Akad. Nauk SSSR, Moscow (1959).

    Google Scholar 

  22. S. P. Novikov and I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in an ideal fluid and an extension of the Lyusternik, Shnirel'man, Morse (LSM) theory. I,” Funkts. Anal. Prilozhen.,15, No. 3, 54–66 (1981).

    Google Scholar 

  23. S. P. Novikov, “Variational methods and periodic solutions of equations of Kirchhoff type. II,” Funkts. Anal. Prilozhen.,15, No. 4, 37–52 (1981).

    Google Scholar 

  24. S. P. Novikov, “Many-valued functions and functionals. An analog of Morse theory,” Dokl. Akad. Nauk SSSR,260, No. 1, 31–34 (1981).

    Google Scholar 

  25. S. P. Novikov, “Hamiltonian formalism and a many-valued analog of Morse theory,” Usp. Mat. Nauk,37, No. 5, 3–49 (1982).

    Google Scholar 

  26. S. P. Novikov and I. A. Taimanov, “Periodic extremals of many-valued or not everywhere positive functionals,” Dokl. Akad. Nauk SSSR,274, No. 1, 26–27 (1984).

    Google Scholar 

  27. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  28. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, New York (1963).

    Google Scholar 

  29. A. I. Fet, “Variational problems on closed manifolds,” Mat. Sb.,30 (72), No. 2, 271–316 (1952).

    Google Scholar 

  30. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods of Homology Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  31. M. M. Postnikov, Introduction to Morse Theory [in Russian], Nauka, Moscow (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematicheskie Zametki, Vol. 38, No. 3, pp. 429–439, September, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igoshin, V.A., Shapiro, Y.L. & Yakovlev, E.I. An application of geodesic modeling of second-order differential equations. Mathematical Notes of the Academy of Sciences of the USSR 38, 745–750 (1985). https://doi.org/10.1007/BF01163712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163712

Keywords

Navigation