Skip to main content
Log in

Residence of silver in mineral deposits of the Thunder Mountain caldera complex, Central Idaho, U.S.A.

Das Vorkommen von Silber in den Erzlagerstätten des Thunder-Mountain-Caldera-Komplexes, Idaho, U.S.A.

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Silver is an accessory element in gold, antimony, and tungsten deposits of the caldera complex. Most of the deposits are economically of low grade and genetically of xenothermal or epithermal character. Their gold- and silver-bearing minerals are usually disseminated, fine grained, and difficult to study. Sparsely disseminated pyrite and arsenoprite are common associates.

Identified silver minerals are: native silver and electrum; the sulfides acanthite, argentite (the latter always inverted to acanthite), and members of the Silberkies group; the sulfosalts matildite, miargyrite, pyrargyrite, argentian tetrahedrite, and unnamed Ag-Sb-S and Ag-Fe-Sb-S minerals; the telluride hessite and the selenide naumannite; halides of the cerargyrite group; and the antimonate stetefeldtite. Suspected silver minerals include the sulfide uytenbogaardtite and the sulfosalts andorite, diaphorite, and polybasite. Electrum, acanthite, and argentian tetrahedrite are common, though nowhere abundant. The other silver minerals are rare.

Silver is present as a minor element in the structure of some varieties of other minerals. These include arsenopyrite, chalcopyrite, chalcostibite, covelline, digenite, galena, sphalerite, and stibnite. The search for adventitious Ag in most of these minerals has been cursory. The results merely indicate that elemental silver is not confined to discrete silver minerals and is, therefore, an additional complication for the recovery of silver-bearing material from some deposits.

Silver occurs cryptically in some plants of the region. At Red Mountain, for example, the ashed sapwood of Douglas-fir (Pseudotsuga menziesii) contains 2 to 300 ppm Ag. Silver in the ashed wood is roughly 100 times as abundant as it is in soil. The phenomenon, useful in biogeochemical exploration, deserves the attention of mineralogists.

Zusammenfassung

Silber ist in den Gold-, Antimon- und Wolframlagerstätten des Caldera-Komplexes ein akzessorisches Element. Die Lagerstätten sind wirtschaftlich geringhaltig und genetisch als xeno- oder epithermal zu deuten. Gold- und silberführende Minerale sind meist feinkörnig und treten akzessorisch auf. Im einzelnen wurden folgende Minerale beobachtet: Gediegen Silber und Elektrum; die Sulfide Akanthit und Argentit (immer zu Akanthit umgewandelt) sowie Silberkiese; die Sulfosalze Matildit, Miargyrit, Pyrargyrit, silberhaltiger Tetraedrit und nicht näher identifizierte Ag-Sb-S- und Ag-FeSb-S-Verbindungen; das Tellurid Hessit und das Selenid Naumannit; Halogenide der Kerargyritgruppe; und das Antimonat Stetefeldit. Mögliche weitere Ag-Minerale schließen das Sulfid Uytenbogaardtit und die Sulfosalze Andorit, Diaphorit und Polybasit ein. Von diesen Mineralen kommen Elektrum, Akanthit und silberhaltiger Tetraedrit am häufigsten vor, während alle anderen selten sind. Die gewöhnlichen Nebengemengteile sind Pyrit und Arsenkies.

Darüber hinaus wird vermutet, daß Spuren von Silber im Kristallgitter anderer Minerale eingebaut vorliegen; insbesondere in den Gittern von Arsenkies, Kupferkies, Chalcostibit, Covellin, Digenit, Bleiglanz, Zinkblende und Antimonit. Hierzu liegen noch keine umfassenden Untersuchungen vor, jedoch kann vermutet werden, daß Silber nicht ausschließlich auf Ag-Minerale sensu stricto beschränkt ist.

Einige Pflanzen des Lagerstättenbezirkes enthalten beachtliche Mengen an Silber, so zum Beispiel die Asche der Douglas-FichtePseudotsuga menziesii. Der Silbergehalt beträgt 2 bis 300 g/t und ist damit gegenüber dem Boden etwa 100fach erhöht. Dieses Phänomen ist von Nutzen in der biogeochemischen Exploration und verdient das Interesse der Mineralogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton MD, Kieft C, Burke EAJ, Oen IS (1978) Uytenbogaardtite, a new silver-gold sulfide. Can Min 16: 651–657

    Google Scholar 

  • *Cater FW, Pinckney DM, Hamilton WB, Parker RL, Weldin RD, Close TJ, Zilka NT (1973) Mineral resources of the Idaho Primitive Area and vicinity, Idaho,with a section on the Thunder Mountain district byB. F. Leonard. US Geol Survey Bull 1304, 431 pp

  • Cooper JR (1951) Geology ofthe tungsten, antimony, and gold deposits near Stibnite, Idaho. US Geol Survey Bull 969-F: 151–195

    Google Scholar 

  • Erdman JA, Leonard BF, McKown DM (1985) A case for plants in exploration—gold in douglas-fir at the Red Mountain stockwork, Yellow Pine district, Idaho. In:McIntyre DH (ed.) Symposium on the geology and mineral deposits of the Challis 1° × 2° quadrangle, Idaho. US Geol Survey Bull 1658A-S: 141–152

    Google Scholar 

  • Kovalevskii AL, Prokopchuk SI (1978) O mineral'nykh formakh zolota v rasteniyakh. Akad Nauk SSSR Dokl 242: 430–133

    Google Scholar 

  • ——, —— (1981) Mineral forms of gold in plants. Dokl Acad Sci USSR, Earth Sci Sec 242: 171–173 [English translation of the preceding paper]

    Google Scholar 

  • Leonard BF (1963) Syenite complex older than the Idaho batholith, Big Creek quadrangle, central Idaho. US Geol Survey Prof Paper 450-E: E 93-E 97

    Google Scholar 

  • —— (1973) Gold anomaly in soil of the West End Creek area, Yellow Pine district, Valley County, Idaho. US Geol Survey Circ 680, 16 pp

    Google Scholar 

  • —— (1985) Ore deposits related to the Thunder Mountain caldera complex (abs.). In:McIntyre DH (ed.) Symposium on the geology and mineral deposits of the Challis 1° × 2° quadrangle, Idaho. US Geol Survey Bull 1658 A -S: 107

    Google Scholar 

  • Leonard BF, Desborough GA, Mead CW (1978) Polhemusite, a new Hg-Zn sulfide from Idaho. Amer Min 63: 1153–1161

    Google Scholar 

  • Erdman JA (1983) Preliminary report on geology, geochemical exploration, and biogeochemical exploration of the Red Mountain stockwork, Yellow Pine district, Valley County, Idaho. US Geol Survey Open-File Rept 83-151, 49pp

  • Kleinkopf MD, Nowlan GA, Jayne DI, in preparation, Mineral resource potential map of The Pinnacles Addition, River of No Return Wilderness, Valley County, Idaho. US Geol Survey

  • Marvin RF (1982) [1984] Temporal evolution of the Thunder Mountain caldera and related features, central Idaho. In:Bonnichsen B, Breckenridge RM (eds.) Cenozoic Geology of Idaho. Idaho Bur Mines and Geology Bull 26: 23–41

  • Mead CW, Conklin N (1968) Silver-rich disseminated sulfides from a tungsten-bearing quartz lode, Big Creek district, central Idaho. US Geol Survey Prof Paper 594-C, 24 pp

  • Nowlan GA, in preparation, Geochemical maps of The Pinnacles Addition, River of No Return Wilderness, Valley County, Idaho. US Geol Survey

  • Lewis RD (1984) Geochemical investigations of the Yellow Pine, Idaho and Republic, Washington mining districts. PhD thesis (unpub.) Purdue Univ

  • Petersen MA (1984) Geology of the Quartz Creek tungsten deposit, Yellow Pine, Idaho. MS thesis (unpub.) Kent State Univ

  • Schrader FC, Ross CP (1926) Antimony and quicksilver deposits in the Yellow Pine district, Idaho. US Geol Survey Bull 780-D: 137–164

    Google Scholar 

  • Shenon PJ, Ross CP (1936) Geology and ore deposits near Edwardsburg and Thunder Mountain, Idaho. Idaho Bur Mines and Geology Pamph 44, 45 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Contribution to the Ore Mineralogy Symposium (IMA/COM) at the 14th General Meeting of the International Mineralogical Association, at Stanford, California, in July, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, B.F., Christian, R.P. Residence of silver in mineral deposits of the Thunder Mountain caldera complex, Central Idaho, U.S.A.. Mineralogy and Petrology 36, 151–168 (1987). https://doi.org/10.1007/BF01163257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163257

Keywords

Navigation