Mathematische Zeitschrift

, Volume 194, Issue 2, pp 275–283 | Cite as

Topological types ofp-hyperelliptic real algebraic curves

  • E. Bujalance
  • J. J. Etayo
  • J. M. Gamboa
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alling, N.L., Greenleaf, N.: Foundations of the theory of Klein surfaces. Lect. Notes in Math., vol. 219, Berlin-Heidelberg-New York: Springer 1971Google Scholar
  2. 2.
    Bujalance, E., Etayo, J.J.: A characterization ofq-hyperelliptic compact planar Klein surfaces (to appear)Google Scholar
  3. 3.
    Bujalance, J.A.: Normal subgroups of even index of an NEC group (to appear)Google Scholar
  4. 4.
    Etayo, J.J.: On the order of automorphism groups of Klein surfaces. Glasg. Math. J.26, 75–81 (1985)Google Scholar
  5. 5.
    Hoare, A.H.M., Singerman, D.: The orientability of subgroups of plane groups, in Groups-St. Andrews 1981, London Math. Soc. Lecture Note. Series71, 221–227 (1982)Google Scholar
  6. 6.
    Knebusch, M.: Isoalgebraic geometry: First steps Séminaire de Theorie des Nombres (Delange-Pisot-Poitou) Paris (1980–81) (Ed. M.J. Bertin). Progress in Math. 22, pp. 127–141. Boston: Birkhäuser 1982Google Scholar
  7. 7.
    Macbeath, A.M.: The classification of non-euclidean plane crystallographic groups. Can. J. Math.19, 1192–1205 (1967)Google Scholar
  8. 8.
    May, C.L.: Large automorphism groups of compact Klein surfaces with boundary. Glasg. Math. J.18, 1–10 (1977)Google Scholar
  9. 9.
    Natanzon, F.M.: Automorphisms of the Riemann suface of anM-curve. Functs. Anal. Appl.12, 228–229 (1978)Google Scholar
  10. 10.
    Preston, R.: Projective structures and fundamental domains on compact Klein surfaces. Ph.D. thesis. Univ. of Texas (1975)Google Scholar
  11. 11.
    Wilkie, M.C.: On non-euclidean crystallographic groups. Math. Z.91, 87–102 (1966)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • E. Bujalance
    • 1
  • J. J. Etayo
    • 2
  • J. M. Gamboa
    • 3
  1. 1.Dep. de Matemática Fundamental, Facultad de CienciasU.N.E.D.MadridSpain
  2. 2.Dep. de Geometría y Topología, Facultad de C. MatemáticasUniversidad ComplutenseMadridSpain
  3. 3.Fakultät für MathematikUniversität RegensburgRegensburgFederal Republic of Germany

Personalised recommendations