Skip to main content
Log in

Petrology and geochemistry of the Cyclops ophiolites (Irian Jaya, East Indonesia): Consequences for the Cenozoic evolution of the north Australian margin

Le massif des Cyclops (Irian Jaya- Ouest Indonésie montre tous les termes d'une séquence ophiolitique comprenant des péridotites résiduelles (harzburgites et dunites), des cumulats gabbroïques, des dolérites, des basaltes de type N-MORB et de rares boninites. Cette série, ophiolitique repose tectoniquement sur des roches mafiques métamorphisées à haute température au Miocene.

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Cyclops massif (Irian Jaya - Western Indonesia) displays all components of an ophiolitic sequence including residual mantle peridotites (harzburgites and dunites), cumulate gabbros, dolerites, normal mid-oceanic ridge basalts (N-MORB) and minor amounts of boninitic lavas. This ophiolitic series tectonically overlies high temperature (HT)-high pressure (HP) mafic rocks metamorphosed during the Miocene.

Mineral chemistry and bulk rock rare-earth element (REE) abundances of the peridotites are characteristic of highly residual mantle rocks. The high Cr# [Cr#=100*Cr/(Cr+Al)] of spinel (up to 60) and very low heavy rare-earth element (HREE) concentrations of peridotites (< 0.1 time the chondritic values) are in agreement with residues of 25 to 35% melting as expected for peridotites from supra-subduction zone environments. Ti-enrichments in spinels and secondary clinopyroxenes (up to 1%, and 0.5%, respectively) are likely a consequence of reaction between mantle-derived melts and the host peridotites. High light rare-earth element (LREE) concentrations reaching up to chondritic values and high field strength element (HFSE) anomalies suggest that the initial composition of the residual peridotites has been previously modified by the passage of boninitic melt(s). The associated basalts and related cumulate rocks display major and trace element contents with Nb-negative anomalies typical of back-arc magmas.

New40K/40Ar isotopic ages obtained from the back-arc basin basalts (BABB - 29 Ma) and boninites (43 Ma) combined with the geochemical signatures of the rocks studied here, indicate that the Cyclops Mountains may have formed in a single suprasubduction environment. This implies southward plunging subduction of the Australian oceanic lithosphere beneath the northern part of the Australian margin. The ultramafic rocks and related lavas (boninites) likely formed during the Eocene in a forearc environment, before their southward obduction onto the island arc crustal welt during the early Miocene. The Pliocene back-thrusting event has led to the slicing of the backarc basin series onto the arc and fore-arc sequences.

Résumé

Les données pétrologiques et géochimiques montrent clairement que les péridotites ont un caractère fortement résiduel. Les fortes teneurs en Cr# [Cr#= 100*Cr/(Cr+Al)] du spinelle (> 60) associées aux très faibles concentrations en terres rares lourdes sur roche totale (<0.1 aux valeurs chondritiques) témoignent de fort taux de fusion (25 à 35%) que l'on rencontre habituellement dans les contextes de subduction. Les enrichissements importants en TiO2 des spinelles et clinopyroxènes secondaires des peridotites (> 1 % et 0.5%, respectivement) sent interprétés comme résultant de phénomènes d'imprégnations importants entre les péridotites et des liquides magmatiques. Les fortes concentrations en terres rares légères des péridotites (proches des valeurs chondritiques) associées aux fortes anomalies en Nb, Sr, Zr, et Hf suggerent que ces liquides étaient de nature boninitique. Les basaltes et les cumulats gabbroïques dérivent de la cristallisation de liquides tholéiitiques de type MORB. Leurs fortes anomalies en Nb, suggerènt cependant une origine dans un bassin arrière-arc

De nouvelles datations isotopiques40K40Ar obtenues sur les basaltes arrière-arch (29 Ma) et les boninites (43 Ma) montrent que le massif des Cyclops s' est probablement formé dans un contexte de zone de subduction impliquant une subduction vers le Sud de la lithosphere océanique australienne sous la marge nord australienne. Les péridotites et laves associées (boninites) se seraient formées à l'Eocène dans un bassin avant-arc, avant d'être obductées au Miocène sur l'are situé plus au sud. Les rétrochevauchements Pliocène ont conduit aux charriages tardifs du bassin arrière-arc sur l'arc et le bassin avant-arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam J, Green TH, Sie SH, Ryan CG (1997) Trace element partitioning between aqueous fluids, silicate melts and minerals. Eur J Mineral 9: 569–584

    Google Scholar 

  • Ali JR,Hall R (1995) Evolution of the boundary between the Philippine sea plate and Australia: paleomagnetic evidence from eastern Indonesia. Tectonophysics 251: 251–275

    Google Scholar 

  • Arculus RJ, Pearce JA, Murton BJ, Van der Laan SR (1992) Igneous stratigraphy and major-element geochemistry of Hole 786A and 786B. Proc Ocean Drill Progrm Sci Results 125: 143–169

    Google Scholar 

  • Auzende J-M, Boespflug X, Bougault H, Dosso L, Toucher J-P, Joron J-L, Ruellan E, Sibuet J-C (1990) From intracratonic extension to mature spreading in back-arc basin: examples from the Okinawa, Lau and, North Fidji basins. Oceanol Acta 10: 153–163

    Google Scholar 

  • Ballantyne P (1992) Petrology and geochemistry of the plutonic rocks of the Halmahera ophiolite, eastern Indonesia, an analogue of modern oceanic forearcs. In:Parson LM, Murton GJ, Browning P (eds) Ophiolites and their modern oceanic analogues. Geol Soc Lond Spec Pub] 60: 179–202

  • Beccaluva L, Serri G (1988) Boninitic and low-Ti subduction-related lavas from intraoceanic arc-basin systems and low-Ti ophiolites: a reappraisal of their petrogenesis and original tectonic setting. Tectonophysics 146: 291–315

    Google Scholar 

  • Bédard JH, Lauzière K, Tremblay A, Sangster A (1988) Evidence for forearc seafloor-spreading from the Betts Cove ophiolite, Newfoundland: oceanic crust of boninitic affinity. Tectonophysics 284: 233–245

    Google Scholar 

  • Benoit M, Polvé M, Ceuleneer G (1996) Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem Geol 134: 199–214

    Google Scholar 

  • Bodinier J-L (1988) Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps. Tectonophysics 149: 67–88

    Google Scholar 

  • Bodinier J-L, Vasseur G, Vernières J, Dupuy C, Fabriès J (1990) Mechanisms of mantle metasomatism: geochemical evidence from Lherz orogenic peridotite. J Petrol 31: 597–628

    Google Scholar 

  • Cotten J, Le Dez A, Ban M,Caroff M, Maury RC, Dulski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chem Geol 119: 115–138

    Google Scholar 

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In:Crawford AJ (ed) Boninites and related rocks. Unwin Hyman, London, pp 1–49

    Google Scholar 

  • Daly MC, Cooper MA, Wilson I, Smith DG, Hooper BGD (1991) Cenozoic plate tectonics and basin evolution in Indonesia. Mar Pet Geol 8: 2–21

    Google Scholar 

  • Davies HI, Jaques AL (1985) Emplacement of ophiolite in Papua New-Guinea. In:Gass IG Lippard SJ, Shelton AW (eds) Ophiolites and oceanic lithosphere. Geol Soc Spec Publ 13: pp 341–349

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas. Contrib Mineral Petrol 86: 54–76

    Google Scholar 

  • Dow DB (1977) A geological synthesis of Papua Guinea. 201 Bureau of Mineral Resources Australia

    Google Scholar 

  • Dow DB, Sukamto R (1984) Western Irian Jaya: the end product of oblique plate convergence in the late Tertiary. Tectonophysics 106: 109–139

    Google Scholar 

  • Dow DB, Robinson GP, Hartono U, Ratman N (1988) Geology of Irian Jaya. Preliminary Geological Report. Geological Research and Development Center, Jakarta, pp 298

    Google Scholar 

  • Eissen J-P, Crawford AJ, Cotten J, Meffre S, Bellon H, Delaune M (1998) Geochemistry and tectonic significance of basalts in the Poya Terrane, New Caledonia. Tectonophysics 284: 203–219

    Google Scholar 

  • Floyd PA, Castillo PR (1992) Geochemistry and petrogenesis of jurassic ocean crust basalts, site 801. Proc Ocean Drill Progrm Sci Results 129: 361–388

    Google Scholar 

  • Foley SF, Wheller GE (1990) Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanates. Chem Geol 85: 1–18

    Google Scholar 

  • Fryer P, Taylor B, H. LC, Hochstaedter AG (1990) Petrology and geochemistry of lavas from Sumisu and Torishima backarc rift. Earth Planet Sci Lett 100: 161–178

    Google Scholar 

  • Fujii T, Scarfe CM (1985) Composition of liquids coexisting with spinel lherzolite at 10 kbar and the genesis of MORBs. Contrib Mineral Petrol 90: 18–28

    Google Scholar 

  • Girardeau J, Francheteau J (1993) Plagioclase-wehrlite and peridotites on the East Pacific Rise (Hess Deep) and the Mid-Atlantic Ridge (DSDP Site 334): evidence for magma percolation in the oceanic upper mantle. Proc Ocean Drill Progrm Sci Results 115: 137–149

    Google Scholar 

  • Hall R (1996) Reconstruction of Cenozoic SE Asia. In:Hall R, Blundell D (eds) Tectonic evolution of southeast Asia. Geol Soc Lond Spec Publ 106: 153–184

  • Hall R (1997) Cenozoic tectonics of SE Asia and Australasia. In:Howes JVC, Noble RA (eds) Petroleum systems of SE Asia and Australasia. Indonesian Petroleum Association, Jakarta, pp 47–62

    Google Scholar 

  • Hall R, Fuller M, Ali JR, Anderson CD (1995) The Philippine sea plate: magnetism and reconstructions. In:Taylor B, Natland JH (eds) Active margins and marginal basins: a synthesis of western Pacific drilling results. American Geophysical Union Monograph, pp 371–404

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46: 2099–2115

    Google Scholar 

  • Hodges KV, Royden L (1984) Geologic thermobarometry of retrograded metamorphic rocks: an indentification of the uplift trajectory of a portion of the northern Scadinavian Caledonides. J Geophys Res 89: 7077–7090

    Google Scholar 

  • Hutchison DS, Norvick M (1980) Geology of north Sepik region, Papua New Guinea Bureau of Mineral Resource Australia, Record 1980/24

    Google Scholar 

  • Jaques AL (1981) Petrology and petrogenesis of cumulate peridotites and gabbros from the Marum ophiolite complex, northern Papua New Guinea. J Petrol 22: 1–40

    Google Scholar 

  • Jaques AL, Chappell BW (1980) Petrology and trace element geochemistry of Papuan Ultramafic belt. Contrib Mineral Petrol 75: 55–70

    Google Scholar 

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73: 287–310

    Google Scholar 

  • Jaques AL, Chappell BW, Taylor SR (1983) Geochemistry of cumulus peridotites and gabbros from the ophiolite complex, northern Papua New-Guinea. Contrib Mineral Petrol 82: 154–164

    Google Scholar 

  • Jenner GA (1981) Geochemistry of high-Mg andesites from Cape Vogel, Papua New Guinea. Chem Geol 33: 307–332

    Google Scholar 

  • Johnson RW Jacques AL (1980) Continent-arc collision and reversal of arc polarity: new interpretations from a critical area. Tectonophysics 63: 111–124

    Google Scholar 

  • Johnson KM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95: 2661–2678

    Google Scholar 

  • Kay RW, Sénéchal RG (1976) The rare earth geochemistry of the Troodos ophiolite complex. J Geophys Res 81: 964–970

    Google Scholar 

  • Kelemen PB, Johnson KTM, Kinzler R, Irving AJ (1990) High field strength element depletions in arc basalts due to mantle: production of harzburgites by mantle-magma interaction. Nature 358: 635–640

    Google Scholar 

  • Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358: 635–641

    Google Scholar 

  • Kelemen PB, Shimizu N, Sal'ters VJ (1995) Extraction of mid-oceanic-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375: 747–753

    Google Scholar 

  • Komor SC, Elthon D, Casey JF (1989) Petrology of a leucogabbroic interval within basalt layered gabbros at North Arm Mountain, Bay of Islands ophiolite. Contrib Mineral Petrol 95: 278–300

    Google Scholar 

  • Lee TY, Lawver LA (1995) Cenozoic plate reconstruction of southeast Asia. Tectonophysics 251: 85–138

    Google Scholar 

  • Li JP (1991) Evolution chimique des phases solides dans la fusion partielle et la rééquilibration de subsolidus des péridotites naturelles : étude expérimentale et applications. Thesis, University of Clermont-Ferrand, 262 pp

  • Mahood GA, Drake RE (1982) K-Ar dating young rhyolitic rocks: a case study of the Sierra La Primavera, Jalisco, Mexico. Geol Soc Am Bull 93: 1232–1241

    Google Scholar 

  • Marlow MS, Johnson LE, Pearce JA, Fryer PB, Pickthorn LG (1992) Pleistocene volcanic rocks in the Mariana forearc revealed by drilling at site 781. Proc Ocean Drill Progrm Sci Results 125: 293–310

    Google Scholar 

  • Maury RC, Defant MJ, Joron J-L (1992) Metasomatism of the sub-arc mantle inferred from trace elements in Philippines xenoliths. Nature 360: 661–663

    Google Scholar 

  • Metcalfe I (1993) Southeast Asian terranes: Gondwanaland origins and evolutions. In:Findlay RH, Unrug R, Banks MR, Veevers JJ (eds) Gondwana 8 — Assembly, Evolution and Dispersal (preceedings Eighth Gondwana Symposium, Hobart, 1991). Balkema, Rotterdam, pp 181–200

    Google Scholar 

  • Monnier C, Girardeau J, Maury RC, Cotten J (1995) Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia). Geology 23: 851–854

    Google Scholar 

  • Near CR (1988) The ogirin and composition of metasomatic fluids and amphiboles beneath Malaita, Salomon island. J Petrol 29: 149–179

    Google Scholar 

  • Nicolas A (1986) Structure and petrology of peridotites: clues to their geodynamic environment. Rev Geophys 24: 875–895

    Google Scholar 

  • Nicolas A, Prinzhofer A (1983) Cumulative or residual origin for the transition zone in ophiolites: structural evidence. J Petrol 24: 188–206

    Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38: 1047–1074

    Google Scholar 

  • Niu Y, Hékinian R (1997) Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges. Earth Planet Sci Lett 146: 243–258

    Google Scholar 

  • Ozawa K (1994) Melting and melt segregation in the upper mantle wedge above subduction zone: evidence from the chromite-bearing peridotites of the Miyamori ophiolite complexe, northeastern Japan. J Petrol 35: 647–678

    Google Scholar 

  • Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistiy of peridotites from Izu-Bonin-Mariana forearc, Leg 125. Proc Ocean Drill Progrm Sci Results 125: 487–506

    Google Scholar 

  • Pearce J, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of suprasubduction zone ophiolites. In:Kokelaar BP, Howells MF (eds) Marginal basin geology: volcanic and associated sedimentary and tectonic processes in modern and ancient marginal basins. Geol Soc Lond Spec Publ 16: 77–94

  • Pearce JA, Van der Laan SR, Arculus RJ, Murton BJ, Ishii T, Peate DW Parkinson IJ (1992) Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): a case study of magma genesis during the initial stages of subduction. Proc Ocean Drill Progrm Sci Results 125: 623–659

    Google Scholar 

  • Pieters PE, Ryburn RJ, Trail DS (1979) Geological reconnaissance in Irian Jaya, 1976–1977 Bureau of Mineral Resources, Australia, Record 1979/19

    Google Scholar 

  • Pigram CJ, Symonds PA (1991) A review of the timing of the major tectonic event in the New Guinea orogen. J Southeast Earth Sci 6: 307–318

    Google Scholar 

  • Prinzhofer A, Allegre C (1985) Residual peridotites and the mecanisms of partial melting. Earth Planet Sci Lett 74: 251–265

    Google Scholar 

  • Reyrson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett 86: 225–239

    Google Scholar 

  • Richards JP, Chappell BW, McCulloch MT (1990) Intraplate-type magmatism in a continental-island-arc collision zone: Porgera intrusive complex, Papua New Guinea. Geology 18: 958–961

    Google Scholar 

  • Saunders AD, Tarney J (1984) Geochemical characteristics of basalt volcanism within back-arc basins. In:Kokelaar BP, Howells MF (eds) Marginal basin geology: volcanic and associated sedimentary and tectonic processes in modern and ancient marginal basins. Geol Soc Lond Spec Publ 16: 57–76

  • Smellie JL, Stone P (1992) Geochemical control on the evolutionary history of the Ballantrae Complex, SW Scotland, from comparisons with recent analogues. In:Parson LM, Murton GJ, Browning P (eds) Ophiolites and their modern oceanic analogues. Geol Soc Lond Spec Publ 60: 171–178

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137: 45–55

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 26: 359–362

    Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene IzuBonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104: 1621–1636

    Google Scholar 

  • Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: implication for magma genesis in subduction zones. Geophys Res Lett 17: 29–32

    Google Scholar 

  • Suen CJ, Frey HA, Malpas J (1979) Bay of Islands ophiolite suite, Newfoundland: petrologic and geochemical caracteristics with emphasis on the rare earth element geochemistry. Earth Planet Sci Lett 45: 337–348

    Google Scholar 

  • Sun SS, McDonough WF (1979) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Saunders AD, Norry JM (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42: 313–345

  • Tatsumi Y (1986) Formation of the volcanic front in subdution zones. J Geophys Res 13: 717–720

    Google Scholar 

  • Taylor B (1992) Rifting and the volcanic-tectonic evolution of Izu-Bonin-Mariana arc. Proc Ocean Drill Progrm Sci Results 126: 627–651

    Google Scholar 

  • Thirlwall MF, Smith TE, Graham AM, Theodorous N, Hollings P, Davidson JP, Arcullus RJ (1994) High field strengh element anomalies in arc lavas: sources or process ? J Petrol 35: 819–838

    Google Scholar 

  • Van der Laan SR, Arculus RJ, Pearce JA, Murton BJ (1992) Petrography, mineral chemistry, and phase relations of the basement boninite series of site 786, Izu-Bonin forearc. Proc Ocean Drill Progrm Sci Results 125: 171–201

    Google Scholar 

  • Visser WA, Hermes JJ (1962) Geological results of the exploration for oil in the Netherlands New Guinea. Verh Kon Ned Geol Mijnb Genootsc 20: 265

    Google Scholar 

  • Wood DA (1979) A variably veined suboceanic upper mantle; genetic significance for midocean ridge basalts from geochemical evidence. Geology 7: 499–503

    Google Scholar 

  • Woodhead J, Eggins S, Gamble J (1993) High field strengh and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114: 491–504

    Google Scholar 

  • Wyllie PJ, Carrol MR, Johnston AD, Rutter MJ, Sekine T, Van der Laan SR (1989) Interaction among magmas and rocks in subduction zone regions: experimental studies from slab to mantle to crust. Eur J Mineral 1: 165–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monnier, C., Girardeau, J., Pubellier, M. et al. Petrology and geochemistry of the Cyclops ophiolites (Irian Jaya, East Indonesia): Consequences for the Cenozoic evolution of the north Australian margin. Mineralogy and Petrology 65, 1–28 (1999). https://doi.org/10.1007/BF01161574

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161574

Keywords

Navigation