Skip to main content
Log in

Alkaline lamprophyre and related dyke rocks in NE Transdanubia, Hungary: The Alcsutdoboz-2 (AD-2) borehole

Alkalische Lamprophyre und assoziierte Ganggesteine in Nordost-Transdanubien, Ungarn: die Bohrung Alcsutdoboz-2 (AD-2)

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Alcsutdoboz-2 (AD-2) core contains 12 magmatic dykes which belong to the Late Cretaceous lamprophyric-carbonatitic association of NE Transdanubia, Hungary. Petrographically, 11 dykes can be considered alkaline lamprophyre (mainly monchiquite), and the remainder might be called carbonatite. The lamprophyre dykes are similar to both alkaline lamprophyres and ultramafic lamprophyres in major element composition, whereas the carbonatite dyke has some features that are similar to carbonatites but others that are dissimilar. Nevertheless, both of the two types of AD-2 dykes possess higher LILE content than the ultramafc lamprophyres and kimberlites, but strongly differ from average carbonatite. Based on the REE pattern, crystal fractionation (mainly of olivine) and separation of a carbonate phase from the parental lamprophyric magma are proposed for genesis of the carbonatite dyke. These characteristics and the compositional zoning of clinopyroxene and mica suggest a complex crystallization history for these dykes. The likeliest origin for the parental lamprophyric melt is through a very small degree of partial melting of metasomatized mantle.

Zusammenfassung

Der Kern der Bohrung Alcsutdoboz-2 (AD-2) enthält zwölf magmatische Gänge, die zu der jung-kretazischen Lamprophyr-Karbonatit-Assoziation des nordöstlichen Transdanubiens in Ungarn gehören. Petrographisch gesehen gehören elf Gänge zu den alkalischen Lamprophyren (hauptsächlich Monchiquit), und der Rest kann als Karbonatit bezeichnet werden. Die Lamprophyrgänge sind in ihrer Hauptelementzusammensetzung sowohl alkalischen Lamprophyren wie ultramafschen Lamprophyren ähnlich. Der Karbonatitgang hingegen zeigt Parameter, die denen von Karbonatiten teilweise, aber nicht durchwegs, ähnlich sind. Beide Typen der AD-2-Gänge zeigen höhere LILE-Gehalte als ultramafische Lamprophre und Kimberlite, unterscheiden sich aber deutlich vom durchschnittlichen Karbonatit. Auf der Basis der Seltenen ErdVerteilung, werden Kristallfraktionierung (hauptsächlich von Olivin) und Abtrennung einer Karbonatphase von lamprophyrischen Magma als Vorgänge gesehen, die für die Entstehung der Karbonatit-Gänge relevant sind. Diese Aspekte und die Zonierung der Zusammensetzungen von Klinopyroxen und Glimmer weisen auf eine komplexe Kristallisationsgeschichte dieser Gänge hin. Sehr wahrscheinlich ist die lamprophyrische Ausgangsschmelze durch eine geringfügige teilweise Aufschmelzung von metasomatisiertem Mantel entstanden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasaka M, Onuma K (1980) The join CaMgSi2O6-CaFeAlSiO6 CaTiAl2O6 and its bearing on the Ti-rich fassaitic pyroxenes. Contrib Mineral Petrol 71: 301–312

    Google Scholar 

  • Aoki K (1971) Petrology of mafic inclusions from Itinomegata, Japan. Contrib Mineral Petrol 30: 314–330

    Google Scholar 

  • Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 18: 326–337

    Google Scholar 

  • Arima M, Edgar AD (1981) Substitution mechanism and solubility of titanium in phlogopites from rocks of probable mantle origin. Contrib Mineral Petrol 77: 288–295

    Google Scholar 

  • Bérczi J, Keömley G, Molnár Zs, Várkonyi T (1982) Detection and identification of emission source and the basis of the trace element composition of aerosols. Period Polytech 26: 123–137

    Google Scholar 

  • Bergman SC (1987) Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In:Fitton JG, Upton BGJ (eds) Alkaline rocks. Blackwell, Edinburgh, pp: 103–191

    Google Scholar 

  • Bol LCGM, Bos A, Sauter PCC, Jansen JBH (1989) Barium-titanium-rich phlogopites in marbles from Rogaland, southwest Norway. Am Mineral 74: 439–447

    Google Scholar 

  • Briqueu JC, Bougault H, Joron JL (1984) Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implication. Earth Planet Sci Lett 68: 297–305

    Google Scholar 

  • Clarke CB, Muecke GK, Pe-Piper G (1983) The lamprophyres of Ubekent Ejbund, West Greenland products of renewed partial melting or extreme differentiation. Contrib Mineral Petrol83: 117–127

    Google Scholar 

  • Cooper AF (1979) Petrology of ocellar lamprophyres from western Otago, New Zealand. J Petrol 20: 139–163

    Google Scholar 

  • Cullers RL, Graf JL (1984) Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks. In:Henderson P (ed) Developments in Geochemistry 2: Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 237–274

    Google Scholar 

  • Deer WA, Howei RH, Zussman J (1965) Rock Forming Minerals, Vol. 3. Longmans, London, p 270

    Google Scholar 

  • Dobosi G, Horváth I (1988) High- and low-pressure cognate clinopyroxenes from the alkali lamprophyres of the Velence and Buda Mountains, Hungary. N Jb Min Abh 158: 241–256

    Google Scholar 

  • Durazzo A, Taylor LA, Shervais JW (1984) Ultramafic lamprophyre in a carbonate platform environment, Mt. Queglia, Abruzzo, Italy. N Jb Min Abh 150: 199–217

    Google Scholar 

  • Embey-Isztin A, Dobosi G, Noske-Fazekas G, Arva-Sós E (1989) Petrology of a new basalt occurrence in Hungary. Mineral Petrol 40: 183–196

    Google Scholar 

  • Esperanca S, Holloway JR (1987) On the origin of some mica lamprophyres: experimental evidence from a mafic minette. Contrib Mineral Petrol 95: 207–216

    Google Scholar 

  • Ferguson J, Currie KL (1971) Evidence of liquid immiscibility in alkaline ultrabasic dikes at Callander Bay Ontario. J Petrol 12: 561–585

    Google Scholar 

  • Fesq HW, Kable EJD, Gurney JJ (1974) Aspects of the geochemistry of kimberlites from the Premier mine, and other selected South African occurrences with particular reference to the rare earth elements. Phys Chem Earth 9: 687–707

    Google Scholar 

  • Forbes WC, Flower MFJ (1974) Phase relations of the titan-phlogopite, K2Mg4TiAl2Si2O (OH): a refractory phase in the upper mantle? Earth Planet Sci Lett 22: 60–66

    Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19: 463–513

    Google Scholar 

  • Gaspar JC, Wyllie PJ (1982) Barium phlogopite from the Jacupiranga carbonatite, Brazil. Am Mineral 67:997–1001

    Google Scholar 

  • — (1987) The phlogopites from the Jacupiranga carbonatite intrusions. Mineral Petrol 36: 121–134

    Google Scholar 

  • Green DH (1970) The origin of basaltic and nephelinitic magmas. Trans Leicester Lit Phil Soc 64: 28–54

    Google Scholar 

  • Guo J, Green TH (1990) Experimental study of barium partitioning between phlogopite and silicate liquid at upper-mantle pressure and temperature. Lithos 24: 83–95

    Google Scholar 

  • Hamilton DL, Freenstone IC, Dawson JB, Donaldson CH (1979) Origin of carbonatites by liquid immiscibility. Nature 279: 52–54

    Google Scholar 

  • Hansen K (1980) Lamprophyres and carbonatitic lamprophyres related to rifting in the Labrador Sea. Lithos 13: 145–153

    Google Scholar 

  • Harrach O (1980) Petrology and geochemistry of magmatic rocks from Dinnyés-2, Diósd-1 and Vál-3 boreholes. (in Hungarian) M. Sc. Thesis, Department of Petrology and Geochemistry, Eötvös University, Budapest

    Google Scholar 

  • Horváth.l, Darida-Tichy M, Odor L (1983) Magnesitiferous dolomitic carbonatite (beforsite) dyke rock from the Velence Mountains MAFI Evi jel 1981-röl: 369–389 (in Hungarian with English abstract)

  • Odor L (1984) Alkaline ultramasic rocks and associated silicocarbonatites in the NE part of the Transdanubian Mts. (Hungary). Miner Slov 16: 115–119

    Google Scholar 

  • Ito M (1986) Kimberlites and their ultramafic xenoliths from Western Kenya. Tscherm Miner Petrog Mitt 35: 193–216

    Google Scholar 

  • Jaques AL, Sun SS, Chappell BW (1989) Geochemistry of the Argyle (AKI) lamproite pipe, Western Australia. In:Ross J (ed) Kimberlites and Related Rocks, Vol 1. Blackwell, Carlton, pp. 170–188

    Google Scholar 

  • Kubovics I, Gál-Sólymos K, Szabó Cs (1985) Petrology and geochemistry of ultramafic xenoliths in mafic rocks of Hungary and Burgenland (Austria). Geol Carpathica 36: 433–450

    Google Scholar 

  • Szabó Cs, Gál-Sólymos K (1989a) A new occurrence of lamprophyre: Buda Mountains, Hungary. Acta Geol Hung 32: 149–168

    Google Scholar 

  • Szabó Cs, Gál-Sólymos K (1989b) Geochemistry of phlogopites in ultramafic xenoliths of lamprophyre dykes (Alcsutdoboz, Hungary). N Jb Min Abh 161: 171–191

    Google Scholar 

  • Larsen JG (1981) Medium pressure crystallization of a monchiquitic magma—evidence from megacrysts of Drever's block, Ubekendt Ejland, West Greenland. Lithos 14: 241–262

    Google Scholar 

  • Mansker WL, Ewing RC, Keil K (1979) Barium titanian biotites in nephelinites from Oahuu, Hawaii. Am Mineral 64:156–159

    Google Scholar 

  • McDonough WF, Frey FA (1989) Rare earth elements in upper mantle rocks. In:Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev Mineral 21: 99–145

  • —,Frey FA McCulloch MT, Sun SS (1985) Isotopic and geochemical systematics in Tertiary—Recent basatts from southeastern Australia and implications for the evolution of the subcontinental lithosphere. Cosmochim Geochim Acta 49: 2051–2067

    Google Scholar 

  • Meyer HOA, Mitchell RH (1988) Sapphire-bearing lamprophyre from Yogo Gulch, Montana—an ouachitite. Canad Mineral 26: 81–86

    Google Scholar 

  • Mitchell RH (1981) Titaniferous phlogopites from the leucite-lamproites the West Kimberley area, Australia. Contrib Mineral Petrol 76: 243–251

    Google Scholar 

  • — (1986) Kimberlites. Plenum Press, New York

    Google Scholar 

  • Bergman SC (1991) Petrology of lamproites. Planum Press, New York

    Google Scholar 

  • Platt RG (1984) The Freemans Cove volcanic suite: field relations, petrochemistry and tectonic setting of nephelinite-basanite volcanism associated with rifting the Canadian Artic archipelego. Can J Earth Sci 21: 428–436

    Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73: 1123–1133

    Google Scholar 

  • Nagy-Balogh J, Hoffman L (1988) Study of Be-enriched volcanic tuffs by optical emission and atomic absoption sprectroscopy. 31th Hung Spear Meeting Abstract 329–332 (in Hungarian)

  • Olafsson M, Eggler DH (1983) Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridotite; Petrologic constraints on the astenosphere. Earth Planet Sci Lett 64: 305–315

    Google Scholar 

  • Papike JJ, Cameron KL, Baldvin K (1974) Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. GSA Abstracts with programs 6: 1053–1054

    Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins: In:Hawkesworth CJ, Norry MJ (eds) Continental Basalts and Mantle Xenoliths, Shiva, Cheshire, pp. 230–249

    Google Scholar 

  • Philpotts AR (1976) Silicate liquid immiscibility: its probable extent and petrogenetic significance. Am J Sci 276: 1147–1177

    Google Scholar 

  • Praegel ND (1981) Origin of ultramafic inclusions and megacrysts in a monchiquite dyke at Streap, Inverness-shire, Scotland. Lithos 14: 305–322

    Google Scholar 

  • Robert JL (1976) Titanium solubility in synthetic phlogopite solid solutions. Chem Geol 17: 213–227

    Google Scholar 

  • Rock NMS (1977) The nature and origin of lamprophyres: some definitions, distinctions, and deviations. Earth Sci Rev 13: 123–169

    Google Scholar 

  • — (1987) The nature and origin of lamprophyres: an overview. In:Fitton JG, Upton BGJ (eds) Alkaline Igneous Rocks. Blackwell, Edinburgh, pp 191–226

    Google Scholar 

  • Rowell WF, Edgar AD (1983) Cenozoic potassium rich mafc volcanism in the western U.S.A.: its relationship to deep subduction. J Geol 91: 338–341

    Google Scholar 

  • Smith J V, Delaney JS, Hervig RL, Dawson JB (1981) Storage of F and Cl in the upper mantle: geochemical implications. Lithos 14: 133–147

    Google Scholar 

  • Solie DN, Su SC (1987) An occurrence of Ba-rich micas from the Alaska Range. Am Mineral 72:995–999

    Google Scholar 

  • Streckeisen A (1979) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks. Geology 7: 331–335

    Google Scholar 

  • Szabó Cs (1984) Mineralogy, petrology and geochemistry of ultramafc nodules in lamprophyre dykes of Alcsutdoboz-2 borehole (Bakonyicum, Hungary): their origin and genetic implications. Doctoral Thesis (in Hungarian) Department of Petrology and Geochemistry, Eötvös University, Budapest

    Google Scholar 

  • — (1985) Xenoliths from Cretaceous lamprophyres of Alcsutdoboz-2 borehole, Transdanubian Central Mountains, Hungary. Acta Mineral Petrogr Szeged 27: 39–50

    Google Scholar 

  • Thompson RN (1974) Some high-pressure pyroxenes. Mineral Mag 39: 768–787

    Google Scholar 

  • — (1977) Primary basalts and magma genesis III Alban Hills, Roman comagmatic province, central Italy. Contrib Mineral Petrol 60: 91–108

    Google Scholar 

  • Tracy RJ (1991) Ba-rich micas from the Franklin Marble, Lime Crest and Sterling Hill, New Jersey. Am Mineral 76:1683–1693

    Google Scholar 

  • Tronnes RG, Edgar AD, Arima M (1985) A high pressure—high temperature study of TiO2 solubility in Mg-rich phlogopite: implications to phlogopite chemistry. Geochim Cosmochim Acta 49: 2323–2329

    Google Scholar 

  • Velde D (1979) Trioctahedral mica in melilite-bearing eruptive rocks. Carnegie Inst Washington Yearb 78: 468–475

    Google Scholar 

  • Wass SY (1979) Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 12: 115–132

    Google Scholar 

  • Wendlandt RF (1977) Barium phlogopite from Haystack Butte, Highwood Mountains, Montana. Carnegie Inst Washington Yearb 76: 534–539

    Google Scholar 

  • Harrison WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and C02 vapor: results and implications for the formation of light rare earthenriched rocks. Contrib Mineral Petrol 69: 409–419

    Google Scholar 

  • Wilkinson JFG (1975) Ultramafic inclusions and high pressure megacrysts from a nephelinite sill, Nandewar Mountains, North-Eastern New South Wales, and their bearing on the origin of certain inclusions in alkaline volcanic rocks. Contrib Miner Petrol 51: 235–262

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

    Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: Nomenclature, average chemical compositions, and element distributions. In:Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp. 1–14

    Google Scholar 

  • Zentai P (1967) Spectrochemical methods for geochemical purposes. Acta Chim Hung 53: 323–333

    Google Scholar 

  • Yagi K, Onuma K (1967) The join CaMgSi2O6-CaTiAl2O6 and its bearing on the titanaugites. J Fac Sci Hokkaido Univ Ser 4 13: 463–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, C., Kubovics, I. & Molnár, Z. Alkaline lamprophyre and related dyke rocks in NE Transdanubia, Hungary: The Alcsutdoboz-2 (AD-2) borehole. Mineralogy and Petrology 47, 127–148 (1993). https://doi.org/10.1007/BF01161563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161563

Keywords

Navigation