Skip to main content
Log in

Phase relations and dielectric properties of BaTiO3 ceramics heavily substituted with neodymium

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Investigations on the phase relations and dielectric properties of (1 -x)BaTiO3 +xNd2/3TiO3 (BNT) ceramics sintered in air below 1650 K have been carried out. X-ray powder diffraction studies indicate apparent phase singularity for compositions withx < 0.3. Nd2Ti2O7 is detected at higher neodymium concentrations. The unit cell parameter changes continuously with neodymium content, and BaTiO3 is completely cubic at room temperature withx ≌ 0.0525, whereas electron diffraction studies indicate that the air-sintered BNT ceramics withx > 0.08 contain additional phases that are partly amorphous even to an electron beam. SEM observations reveal that BaTiO3 grains are mostly covered by a molten intergranular phase, and show the presence of randomly distributed Nd2Ti2O7 grains. Energy dispersive X-ray analysis shows the Ba-Nd-Ti ternary composition of the intergranular phase. Differential thermal analysis studies support the formation of a partial melt involving dissolution-precipitation of boundary layers of BaTiO3 grains. These complex phase relations are accounted for in terms of the phase instability of BaTiO3 with large cation-vacancy concentration as a result of heavy Nd3+ substitution. The absence of structural intergrowth in (1 -x)BaTiO3 +xNd2/3TiO3 under oxidative conditions leads to a separation of phases wherein the new phases undergo melting and remain X-ray amorphous. BNT ceramics with 0.1 <x < 0.3 have εeff ≳ 104 with tanδ < 0.1 and nearly flat temperature capacitance characteristics. The grain-size dependence of εeff, variations of εeff and tanδ with the measuring frequency, the non-ohmic resistivities, and the non-linear leakage currents at higher field-strengths which are accompanied by the decrease in εeff and rise in tanδ, are explained on the basis of an intergranular (internal boundary layer) dielectric characteristic of these ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Saburi,J. Phys. Soc. Jpn 14 (1959) 1159.

    Google Scholar 

  2. T. Murakami, T. Miyashita, M. Nakahara andE. Sekine,J. Amer. Ceram. Soc. 56 (1973) 294.

    Google Scholar 

  3. T. Ashida andH. Toyoda,Jpn J. Appl. Phys. 5 (1966) 269.

    Google Scholar 

  4. H. Brauer,Z. Angew. Phys. 29 (1970) 282.

    Google Scholar 

  5. W. Heywang,J. Mater. Sci. 6 (1971) 1214.

    Google Scholar 

  6. P. Murugaraj andT. R. N. Kutty,Mater. Res. Bull. 20 (1985) 1473.

    Google Scholar 

  7. P. Murugaraj, T. R. N. Kutty andM. Subbarao,J. Mater. Sci. 21 (1986) 3521.

    Google Scholar 

  8. A. Yamaji, Y. Enomoto, K. Kinoshito andT. Murakami,J. Amer. Ceram. Soc. 60 (1977) 97.

    Google Scholar 

  9. R. Wernicke,Phys. Status Solidi 47 (1978) 139.

    Google Scholar 

  10. N. G. Eror andD. M. Smyth, in “The chemistry of Extended Defects in Non-metallic Solids”, edited by L. Eyring and M. O'Keefe (North-Holland, Amsterdam, 1970) p. 62.

    Google Scholar 

  11. S. R. Ruddlesden andP. Popper,Acta Crystallogr. 11 (1958) 54.

    Google Scholar 

  12. U. Balachandran andN. G. Eror,J. Amer. Ceram. Soc. 64 (1981) C75.

    Google Scholar 

  13. T. Y. Tien andF. A. Hummel,Trans. Br. Ceram. Soc. 66 (1967) 233.

    Google Scholar 

  14. D. Hennings,Mater. Res. Bull. 6 (1971) 321.

    Google Scholar 

  15. B. C. Tofield,J. Solid State Chem. 12 (1975) 270.

    Google Scholar 

  16. Y. H. Hu, M. P. Harmer andD. M. Smyth,J. Amer. Ceram. Soc. 68 (1985) 372.

    Google Scholar 

  17. L. G. Scherbakova, L. G. Mamsurova andG. E. Sukhanova,Russ. Chem. Rev. 48 (1979) 228.

    Google Scholar 

  18. D. Kolar, Z. Stadler, S. Gaberseck andD. Suvorov,Ber. Deutsch, Keram. Ges. 55 (1978) 346.

    Google Scholar 

  19. T. Negas, R. S. Roth, H. S. Parker andD. Minor,J. Solid State Chem. 9 (1974) 297.

    Google Scholar 

  20. E. Tillmanns, W. Hofmeister andW. H. Baur,ibid. 58 (1985) 14.

    Google Scholar 

  21. T. R. N. Kutty, P. Murugaraj andN. S. Gajbhiye,Mater. Lett. 2 (5A) (1984) 396.

    Google Scholar 

  22. Idem andN. S. Gajbhiye,Mater. Res. Bull. 20 (1985) 565.

    Google Scholar 

  23. G. V. Lewis, C. R. A. Catlow andR. E. W. Casselton,J. Amer. Ceram. Soc. 68 (1985) 555.

    Google Scholar 

  24. H. M. Chan, M. P. Harmer andD. M. Smyth,ibid. 69 (1986) 507.

    Google Scholar 

  25. L. Rimai andG. A. DeMars,Phys. Rev. 127 (1962) 702.

    Google Scholar 

  26. S. Makishima, K. Hosegawa andS. Shionoya,J. Phys. Chem. Solids 20 (1962) 249.

    Google Scholar 

  27. J. Daniels andR. Wernicke,Philips Res. Repts. 31 (1976) 544.

    Google Scholar 

  28. R. Portier, M. Fayard, A. Carpy andJ. Galy,Mater. Res. Bull. 9 (1974) 371.

    Google Scholar 

  29. M. Nanot, F. Queyroux, J. C. Gilles, R. Portier andM. Fayard,ibid. 10 (1975) 313.

    Google Scholar 

  30. D. Hennings andG. Rosenstein,ibid. 7 (1972) 1505.

    Google Scholar 

  31. V. V. Prisedsky, V. P. Komarov, G. F. Panko andV. V. Klimov,Ferroelectrics 23 (1980) 23.

    Google Scholar 

  32. A. H. Meitzler,ibid. 11 (1976) 503.

    Google Scholar 

  33. R. M. Glaister,Proc. IEE 109 B (Suppl. 22) (1961) 423.

    Google Scholar 

  34. S. Waku, N. Nishimura, T. Murakami, A. Yamaji, T. Edahiro andM. Uchidate,Rev. Elect. Commun. Lab. 19 (1971) 665.

    Google Scholar 

  35. R. Wernicke, in “Advances in Ceramics”, edited by L. M. Levinson, (American Ceramic Society, Ohio, 1981) p. 272.

    Google Scholar 

  36. I. Burn andS. Neirman,J. Mater. Sci. 17 (1982) 3510.

    Google Scholar 

  37. K. Lichtnecker,Phys. Z. 27 (1926) 115.

    Google Scholar 

  38. G. I. Skanavi andE. N. Matveeva,J. Exp. Theor. Phys. 30 (1956) 1049.

    Google Scholar 

  39. L. E. Goss,Proc. IEE 109B (Suppl. 22) (1961) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutty, T.R.N., Murugaraj, P. Phase relations and dielectric properties of BaTiO3 ceramics heavily substituted with neodymium. J Mater Sci 22, 3652–3664 (1987). https://doi.org/10.1007/BF01161474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161474

Keywords

Navigation