Skip to main content
Log in

Defect microstructure and microplasmas in silicon avalanche photodiodes

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Soft, noisy silicon avalanche photodiodes were studied using the SEM electron beam induced current technique and transmission electron microscopy. They were found to contain varying concentrations of (i) diffusion-induced misfit dislocations, (ii) precipitates and (iii) cusps (lines of shallower penetration) in ragged p-n+ junctions due to dislocation-retarded diffusion. The noise was of classical microplasma form but the sites of this breakdown did not correlate with the precipitates as in most previous cases, but occurred at favoured points along the cusps in the p-n+ junction. Low and intermediate densities of misfit dislocations were found to produce microplasmas with lower breakdown voltages than very high densities. The shallowest misfit dislocations produced the greatest diffusion retardation, suggesting that removal of atoms from the diffusing flux by segregation to the dislocation is the mechanism responsible.[/p]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. M. Bollen, J. J. Goedbloed andE. T. J. M. Smeets,Philips Tech. Rev. 36 (1976) 205.

    Google Scholar 

  2. L. J. Mayes,Electro-optic System Design (December 1982) p. 28.

  3. K. G. McKay,Phys. Rev. 94 (1954) 877.

    Google Scholar 

  4. H. Kressel,RCA Rev. 28 (1967) 175.

    Google Scholar 

  5. D. J. Rose,Phys. Rev. 105 (1957) 413.

    Google Scholar 

  6. A. G. Chynoweth andG. L. Pearson,J. Appl. Phys. 29 (1958) 1103.

    Google Scholar 

  7. W. Shockley,Solid State Electron. 19 (1961) 35.

    Google Scholar 

  8. A. Goetzberger andW. Shockley,J. Appl. Phys. 31 (1960) 1821.

    Google Scholar 

  9. A. G. Cullis andL. E. Katz,Phil. Mag. 30 (1974) 1419.

    Google Scholar 

  10. K. V. Ravi, C. J. Varker andC. E. Volk,J. Electrochem. Soc. 120 (1973) 533.

    Google Scholar 

  11. C. J. Varker andK. V. Ravi,J. Appl. Phys. 45 (1974) 272.

    Google Scholar 

  12. K. V. Ravi, C. J. Varker andC. E. Volk,J. Electrochem. Soc. 120 (1973) 533.

    Google Scholar 

  13. C. J. Varker andK. V. Ravi,J. Appl. Phys. 45 (1974) 272.

    Google Scholar 

  14. J. Heydenreich, H. Blumtritt, R. Gleichmann andH. Johansen,J. Physique 40 Colloque (Supplement)C6 (1981) C6–23.

    Google Scholar 

  15. C. Donolato, P. G. Merli andJ. Vecchi,J. Electrochem. Soc. 124 (1977) 473.

    Google Scholar 

  16. P. D. Augustus, J. Knight andL. W. Kennedy,J. Microsc. 118 (1980) 315.

    Google Scholar 

  17. C. J. Varker, in Proceedings of 9th Annual Conference on Reliability Physics (IEEE. New York, 1971) p. 155.

    Google Scholar 

  18. J. W. Gaylord,J. Electrochem. Soc. 113 (1966) 753.

    Google Scholar 

  19. N. F. B. Neve, K. A. Hughes andP. R. Thornton,J. Appl. Phys. 37 (1966) 1704.

    Google Scholar 

  20. cR. J.] McIntyre,ibid. 32 (1961) 983.

    Google Scholar 

  21. M. W. Nield andJ. M. Leck,ibid. 18 (1967) 185.

    Google Scholar 

  22. K. I. Nutall andM. W. Nield,Solid State Electron. 18 (1975) 13.

    Google Scholar 

  23. T. Kaneda, H. Matsumoto andT. Tamaoka,J. Appl. Phys. 47 (1976) 3135.

    Google Scholar 

  24. M. Lesniak, B. A. Unvala andD. B. Holt,J. Microsc. 135 (1984) 255.

    Google Scholar 

  25. D. Fathy, T. G. Sparrow andU. Valdre,ibid. 118 (1980) 263.

    Google Scholar 

  26. M. Lesniak andD. B. Holt, in “Microscopy of Semiconducting Materials”, Conference Series No. 67, edited by A. G. Cullis, S. M. Davidson and G. R. Booker (Institute of Physics, Bristol, 1983) p. 439.

    Google Scholar 

  27. D. B. Holt andM. Lesniak,Izv. Acad. Nauk SSSR to be published.

  28. M. Lesniak, E. Napchan andD. B. Holt, in “Electron Microscopy and Analysis”, Conference Series No. 68 (Institute of Physics, Bristol, 1983) p. 119.

    Google Scholar 

  29. W. Czaja,J. Appl. Phys. 37 (1966) 3441.

    Google Scholar 

  30. M. C. Duffy, F. Barson, J. M. Fairchild andG. H. Schwuttke,J. Electrochem. Soc. 115 (1968) 84.

    Google Scholar 

  31. E. Levine, J. Washburn andG. Thomas,J. Appl. Phys. 38 (1967) 81.

    Google Scholar 

  32. Idem, ibid. 38 (1967) 87.

    Google Scholar 

  33. C. Ghezzhi andJ. Servidori,J. Mater. Sci. 9 (1974) 1797.

    Google Scholar 

  34. P. Ashburn andC. Bull,Solid State Electron. 22 (1979) 105.

    Google Scholar 

  35. K. V. Ravi, “Imperfections and Impurities in Semiconductor Silicon” (Wiley, New York, 1981) p. 137.

    Google Scholar 

  36. D. B. Holt,J. Phys. Chem. Solids 27 (1966) 1053.

    Google Scholar 

  37. M. Servidori andA. Armigliato,J. Mater. Sci. 10 (1975) 306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesniak, M., Holt, D.B. Defect microstructure and microplasmas in silicon avalanche photodiodes. J Mater Sci 22, 3547–3555 (1987). https://doi.org/10.1007/BF01161457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161457

Keywords

Navigation