Skip to main content
Log in

Chemical volume diffusion coefficients for stainless steel corrosion studies

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemical diffusion coefficients for chromium in austenitic and ferritic steels are determined using diffusion couples studied by electron probe microanalysis techniques. The average chemical volume diffusion coefficient, for the composition range 14 to 28 at % chromium, for ferritic AISI 446 in the temperature range 800 to 1000° C is:

$$\tilde D = 0.15\left( {\frac{{ + 0.54}}{{ - 0.12}}} \right) \exp \left( {\frac{{ - 210( \pm 15)}}{{RT}}} \right) cm^2 \sec ^{ - 1} $$

and for austenitic AlSl 310 in the temperature range 800 to 1200°C is:

$$\tilde D = 0.27\left( {\frac{{ + 1.04}}{{ - 0.22}}} \right) \exp \left( {\frac{{ - 246( \pm 16)}}{{RT}}} \right) cm^2 \sec ^{ - 1} $$

whereR is in kJ K−1 mol−1 Good agreement is found with existing data for ferritic steels but the data are more scattered in the austenitic case. Diffusion data from diffusion couples are thought to be more realistic than those obtained from tracer work for the purpose of predicting diffusion-controlled corrosion behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. Williams, R. G. Faulkner, L. W. Pinder andD. J. Lees,Corros. Sci. (1986).

  2. T. Ericsson, L. G. Liljestrand, S. Schlstedt andH. Sterner,JISI 208 (1970) 1109.

    Google Scholar 

  3. P. J. Alberry andW. S. Kyte,Met. Sci. 12 (1978) 515.

    Google Scholar 

  4. L. S. Darken,Trans AIMS 175 (1948) 184.

    Google Scholar 

  5. P. J. Shewman, “Diffusion in Solids” (McGraw-Hill, New York, 1963) p. 30.

    Google Scholar 

  6. W. Jost, “Diffusion”, 2nd Edn (Academic, London, 1960).

    Google Scholar 

  7. A. F. Smith andG. B. Gibes,Met. Sci. 3 (1969) 93.

    Google Scholar 

  8. A. F. Smith,ibid. 9 (1975) 375.

    Google Scholar 

  9. R. A. Perkins, J. R. Padgett andN. K. Tunali Metall Trans. 4 (1973) 2535.

    Google Scholar 

  10. W. Assassa andP. Guiraldenq,Met. Sci. 12 (1978) 123.

    Google Scholar 

  11. H. S. Daruvala andK. R. Bube,Met. Sci. Eng. 41 (1979) 293.

    Google Scholar 

  12. Idem, J. Nucl. Mater. 87 (1979) 211.

    Google Scholar 

  13. S. J. Rothman, L. J. Nowicki andG. E. Murch,J. Phys. F Met. Phys. 10 (1980) 383.

    Google Scholar 

  14. P. J. Alberry andC. W. Haworth,Met. Sci. 8 (1974) 407.

    Google Scholar 

  15. A. W. Bowen andG. M. Leak,Met. Trans. 1 (1970) 1695.

    Google Scholar 

  16. Idem, ibid. 1 (1970) 2767.

    Google Scholar 

  17. R. A. Wolfe andH. W. Paxton,Trans TMS-AIME 230 (1964) 1426.

    Google Scholar 

  18. H. W. Paxton andT. Kunita'ke,ibid. 218 (1960) 1003.

    Google Scholar 

  19. A. F. Smith andR. Hales,Met. Sci. 10 (1976) 418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P.I., Faulkner, R.G. Chemical volume diffusion coefficients for stainless steel corrosion studies. J Mater Sci 22, 3537–3542 (1987). https://doi.org/10.1007/BF01161455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161455

Keywords

Navigation