Abstract
The effect of stacking fault energy (SFE) on the evolution of microstructures during wire drawing at room temperature has been studied in pure aluminium, pure copper and Cu-2.2% Al andCu-4.5% Al alloys which covers a range of SFE values from 4 to 166 mJ m−2. The compositions are expressed in atomic parts per million by weight. The microstructures have been characterized from samples obtained by deforming rods of these materials to true wire drawing strain values of up to 1.47. A decrease in the SFE value changes the deformation mechanisms from the formation of cell structure and their size refinement in a high SFE material to the formation of deformation bands and deformation twins in a low SFE materials. The Cu-2.2% Al alloy deforms by deformation bands at low true strain values while deformation twins within the bands control the deformation mechanisms at higher true strain values. The alloy, Cu-4.5% Al, with the lowest SFE value deforms only by deformation twins even at low true strain values and the presence of overlapping and intersecting deformation twins are the dominating features as the rods are drawn to higher true wire drawing strains.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
L. E. Murr, “Interfacial Phenomenon in Metals and Alloys”, Reprinted by Techbooks (original publisher was Addison-Wesley Publishing Co. Herndon, VA, 1975) pp. 145–148.
S. K. Varma andB. G. Lefevre,Metall. Trans. A 11A (1977) 935.
J. D. Embury, A. S. Keh andR. M. Fisher,Trans. TMS-AIME 236 (1966) 640.
I. Samajdar andS. K. Varma,Mat. Sci. Engng A143 (1991) L1.
A. W. Thompson,Metall. Trans. A 8A (1977) 833.
N. Hansen andD. Kuhlmann-Wilsdorf,Mater. Sci. Engng 81 (1986) 141.
N. Hansen,Mater. Sci. Tech. 6 (1990) 1039.
J. J. Gracio, J. V. Fernandez andJ. H. Schmitt,Mater. Sci. Engng A118 (1989) 97.
D. Sil, J. G. Rao andS. K. Varma,Metall. Trans. A 23A (1992) 3166.
D. Sil andS. K. Varma,ibid. 23A (1993) 1153.
J. G. Rao andS. K. Varma,ibid. 24A (1993) 2559.
D. Kuhlmann-Wilsdorf,Mater. Sci. Engng A113 (1989) 1.
D. L. Holt,J. Appl. Phys. 41 (1970) 3197.
M. R. Staker andHolt,Acta Metall. 20 (1972) 569.
G. Langford andM. Cohen,Metall. Trans. A 6A (1975) 901.
W. H. Zimmer, S. S. Hecker, D. L. Rohr andL. E. Murr,Met. Sci. 17 (1983) 198.
J. C. Huang andG. T. Gray III,Acta Metall. 12 (1989) 3335.
G. T. Gray III,J. de Physique IV 4 (1994) C8–373.
Idem, in “Twinning in Advanced Materials”, edited by M. H. Yoo and M. Wuttig (The Minerals, Metals and Materials Society, Pittsburg, PA, 1994) pp. 337–349.
S. I. Hong andC. Laird,Acta Metall. 38 (1990) 1581.
P. J. Woods,Phil. Mag. 28 (1973) 155.
H. Mori andH. Fujita,J. Phys. Soc. Jpn 38 (1975) 1342.
C. E. Feltner andC. Laird,Acta Metall. 15 (1967) 1633.
U. F. Kocks,Metall. Trans. A 16A (1985) 2109.
H. Neuhauser, O. B. Arkan andH. H. Potthoff,Mater. Sci. Engng 81 (1986) 201.
U. F. Kocks, R. E. Cook andR. A. Mulford,Acta Metall. 33 (1985) 623.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Varma, S.K., Caballero, V., Ponce, J. et al. The effect of stacking fault energy on the microstructural development during room temperature wire drawing in Cu, Al and their dilute alloys. J Mater Sci 31, 5623–5630 (1996). https://doi.org/10.1007/BF01160807
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01160807