Skip to main content
Log in

Strontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South America

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Strontian-loparite is recognized at Sarambi and Chiriguelo, Paraguay and at Salitre I, Brazil as an accessory mineral in rheomorphic sanidine-aegirine-nepheline dikes associated with carbonatite plugs. Strontio-chevkinite is recognized only at Sarambi in the same rheomorphic fenites hosting Strontian-loparite, with lamprophyllite as an additional strontium-bearing mineral.

Electron microbeam analyses of strontian-loparite yield fairly constant TiO2 contents (−40 wt.%), with REE (25–30 wt.%, and Ce>La), SrO (8–24 wt.%), Na2O (2.5–7.8 wt.%), CaO (1.9–2.8 wt.%), Nb2O5 (2.7–8.8 wt.%), FeO (≃1 wt.%), and Zr, Al, Cr, Y, Mn, Mg, Ba, and K≃0.5 wt.% (oxides). Representative formulae for samples from Sarambi are (Sr0.42 REE0.27 Na0.20 Ca0.09 K0.01 Ba0.005)0.995 (Ti0.94 Zr0.002 Fe0.025 Nb0.036)1.003 O3, which is similar to Chiriguelo but contrasts with Salitre I (Sr0.14 REE0.32 Ca0.09 Ba0.004 Na0.44 K0.006)1.00 (Ti0.88 Nb0.12 Fe0.02 Zr0.005)1.025 O3, which has lower Sr but higher Na+Nb. Approximately 50% of the solid solution series between loparite and tausonite (SrTiO3) is present, establishing this as a new mineral series of cubic perovskite-type structures. The symmetry is Pm3m, a=3.886(1) Å, V=58.687(6) Å3,Z=1, with the strongest reflections at 2.746(100)(110), 1.587(50)(211), 1.942(40)(200), 1.374(30)(220), and 1.0398 (25)(321), Å. Calculated density is 5.26 gm/cm3. The mineral is idiomorphic in cubes, exhibits fluorite-type interpenetrating twins and has a metallic luster. It is opaque in tones of gray-white, with deep ruby red internal reflections. Spectral reflectances in air and oil, respectively are: 470 nm 17.9–18.5%, 5.7–5.8%; 546 nm 16.6–17.2%, 5.0–5.1%, 589 nm 16.3–16.8%, 4.8–5.0%; 650 nm 16.1–16.5%, 4.7–4.8%. Vickers microhardness values range from 1,206–1,150 kg/mm2.

Strontio-chevkinite compositions average TiO2=23.16, SiO2=20.45, ZrO2=10.3, FeO=6.0, CaO=2.0, SrO=19.6, La2O3=9.18, Ce2O3=9.35 (all wt.%), with minor contents of Nb2O5, Al2O3, Cr2O3, MnO, MgO, BaO, Na2O, K2O, PbO and Y2O3. A modified formula for the mineral is (Sr2[La, Ce]1.5Ca0.5)4 Fe 2+0.5 Fe 3+0.5 (Ti, Zr)2 Ti2 Si4 O22. The symmetry is P21/a and the cell parameters area=13.56 Å,b=5.70 Å,c=11.10A,β=100.32°,V=844.86 Å3, with Z=2. The strongest reflections are 3.01(100)(401), 1.97(75)(024), 2.19(70)(42¯1) 2.51(40)(022), 2.74(30)(004), and 2.85(25)(020) Å. Calculated density is 5.44 gm/cm3. The mineral is opaque with a submetallic luster and thick parallel or interpenetrating twins are apparent in polished sections. It has a weak to medium anisotropy in air and oil immersion, with estimated reflectances of ≃10% and ≃2%, respectively. The mineral is dark gray in reflected light and has a characteristic fleshpink color.

Temperature estimates from alkali feldspar-nepheline and inferredT °C from strontian-loparite and strontiochevkinite, coupled with model temperatures for fenitization and rheomorphism, along with high Sr ∶ Ba and Na ∶ K ratios, imply that the new minerals and their host rocks were generated at moderate depths (≃5 km) at high oxygen pressures (much greater than MH) and crystallized atT≃500–550° C. The very high oxidation states may have stabilizedtetravalent iron, and it is proposed that the semi-conducting properties of strontium titanates could potentially serve to determine theT andfO2 of naturally occurring dielectric minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balachandran U, Eror NG (1981) Electrical conductivity in strontium titanates. J Solid State Chem 39:351–359

    Google Scholar 

  • Basmajian JA, DeVries RC (1957) Phase equilibria in the system BaTiO3-SrTiO3. J Am Cer Soc 40:373–376

    Google Scholar 

  • Bonatti S (1959) Chevkinite, perrierite and epidotes. Am Mineral 44:115–137

    Google Scholar 

  • Bonatti S, Gottardi G (1954) Nuovi dati sulla perrierite. Relazioni tra perrierite, chevkinite ed epidote. Rend Soc Mineral Ital 10:208–225

    Google Scholar 

  • Brooks CK, Rucklidge JC (1976) Tertiary peralkaline rhyolite dikes from the Skaergaard Area, Kangerdlugssuag. East Greenland, Medd om Gronland, Bd:197

  • Burn I, Nierman S (1982) Dielectric properties of donor-doped polycrystalline SrTiO3. J Materials Sci 17:3510–3524

    Google Scholar 

  • Cabbri LJ, Criddle AJ, LaFlamme HJG, Bearne GS, Harris DC (1981) Mineralogical study of complex Pt-Fe nuggests from Ethiopia. Bull Mineral 104:508–525

    Google Scholar 

  • Calvo C, Faggiani R (1974) A re-investigation of the crystal structures of chevkinite and perrierite. Am Mineral 59:1277–1285

    Google Scholar 

  • Comte D, Hasui Y (1971) Geochronology of eastern Paraguay by the potassium-argon method. Revista Brasileira Geosciencias 1:33–43

    Google Scholar 

  • Criddle AJ (1980) Editorial policy for the second issue of the IMA/COM quantitative data file. Can Mineral 18:553–558

    Google Scholar 

  • Currie KL, Ferguson J (1971) A study of fenitization around the alkaline carbonatite complex at Callander Bay, Ontario Canada. Can J Earth Sci 8:498–517

    Google Scholar 

  • Dawson JB (1980) Kimberlites and their xenoliths. Springer Verlag, Berlin

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1966) An introduction to the rock forming silicates. Longman: London

    Google Scholar 

  • Demazeau G, Buffat B, Pouchard M, Hagenmuller P (1982) Unusual oxidation states and electronic configuration of iron. J Solid State Chem 45:88–92

    Google Scholar 

  • Eror NG, Balachandran U (1981) Self compensating in lanthanumdoped strontium titanate. J Solid State Chem 40:85–91

    Google Scholar 

  • Eror NG, Balachandran U (1982a) Electrical conductivity in strontium titanate with nonideal cationic ratio. J Solid State Chem 42:227–241

    Google Scholar 

  • Eror NG, Balanchandran U (1982b) High temperature defect structure of acceptor-doped strontium titanate. J Am Cer Soc 65:426–431

    Google Scholar 

  • Exley RA (1980) Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems. Earth Planet Sci Lett 48:97–110

    Google Scholar 

  • Fersman AE (1926) Minerals of the Kola Peninsula. Am Mineral 11:289–299

    Google Scholar 

  • Fleischer M (1970) Some possible new minerals not yet found. Mineral Record, Fall:121–123

  • Galasso FS (1979) Structure, properties and preparation of perovskite-type compounds. Pergamon Press: Oxford

    Google Scholar 

  • Gottardi A (1960) The crystal structure of perrierite. Am Mineral 45:1–14

    Google Scholar 

  • Guha JP, Kolar D (1973) Subsolidus equilibria in the system BaO-CeO2. J Am Cer Soc 56:5–7

    Google Scholar 

  • Gray TJ (1973) Strontium containing compounds. Proc Int Conf Atlantic Industrial Research Inst Pub: Ottawa

    Google Scholar 

  • Haggerty SE, Smyth JR, Erlank AJ, Rickard RS, Danchin RV (1983) Lindsleyite (Ba) and mathiasite (K): Two new chromium-titanates in the crichtonite series from the upper mantle. Am Mineral 68:494–505

    Google Scholar 

  • Harding RR, Merriman RJ, Nancarrow PHA (1982) A note on the occurrence of chevkinite, allanite, and zirkelite on St. Kilda, Scotland. Mineral Mag 46:445–448

    Google Scholar 

  • Hartman P (1969) Can Ti4+ replace Si4+ in silicates? Mineral Mag 37:366–368

    Google Scholar 

  • Heinrich EW (1966) The geology of carbonatites. Rand McNally: Chicago

    Google Scholar 

  • Higgins JB, Ribbe PH (1976) The crystal chemistry and space groups of natural and synthetic titanites. Am Mineral 61:878–888

    Google Scholar 

  • Ito J (1967) A study of chevkinite and perrierite. Am Mineral 52:1094–1104

    Google Scholar 

  • Ito J, Arem JE (1971) Chevkinite and perrierite: Synthesis, crystal growth and polymorphism. Am Mineral 56:307–319

    Google Scholar 

  • Izett GA, Wilcox RE (1968) Perrierite, chevkinite, and allanite in upper cenozoic ash beds in the western United States. Am Mineral 53:1558–1567

    Google Scholar 

  • Jaffe HW, Evans HT, Chapman RW (1956) Occurrence and age of chevkinite from the Devil's Slide fayalite quartz syenite near Stark, New Hampshire. Am Mineral 41:474–487

    Google Scholar 

  • Kauffman AJ, Jaffe HW (1946) Chevkinite (tscheffkinite) from Arizona. Am Mineral 31:582–588

    Google Scholar 

  • Kapustin YL (1980) Mineralogy of carbonatites. Amerind Pub Co: New Delhi

    Google Scholar 

  • Kapustin YL (1981 a) Endogenic deposits III. Deposits in relation to deep mantle alkaline and alkaline-carbonatite magmatism and metasomatism. 6 Agpaitic nepheline syenites, uritites and meltignites with loparites. Chem Abstr (195213t) 94:186

    Google Scholar 

  • Kapustin YL (1981 b) Endogenic deposits III. Deposits in relation to deep seated mantle alkaline and alkaline-carbonatite magmatism and metasomatism. 7 Rare metal fenites. Chem Abstr (195213t) 94:186

    Google Scholar 

  • Kapustin YL (1982) Geochemistry of strontium and barium in carbonatites. Geochem Int 19:38–48

    Google Scholar 

  • Kapustin YL, Lapitskiy VT, Pogrebnoy VT, Stornak PN, Kochanov YN (1978) The carbonatite zone in the Ukraine Shield. Int Geol Rev 20:1131–1141

    Google Scholar 

  • King BC, Sutherland DS (1966) The carbonatite complexes of Eastern Uganda. In: Tuttle OF, Gittins J (eds) Interscience John Wiley: New York

    Google Scholar 

  • Kolar D, Trontel J, Stadler Z (1982) Influence of interdiffusion on solid solution formation and sintering in the system BaTiO3-SrTiO3. J Am Cer Soc 65:470–474

    Google Scholar 

  • Kwestroo W, Paping HAM (1959) The systems BaO-TiO2-SrO, BaO-CaO-TiO2 and SrO-CaO-TiO2. J Am Cer Soc 42:292–299

    Google Scholar 

  • La Bas MJ (1981) Carbonatitic magmas. Mineral Mag 44:133–140

    Google Scholar 

  • Lima-de-Faria J (1962) Heat treatment of chevkinite and perrierite. Mineral Mag 33:42–47

    Google Scholar 

  • Longo V, Meriani S, Ricciardiello F (1981) Subsolidus phase relations between 900° and 1,700° C in the systems BeO-MgO-CeO2, SrO-MgO-CeO2, BaO-MgO-CeO2, and BaO-CaO-CeO2. J Am Cer Soc Comm:C38–39

  • MacChesney JB, Sherwood RC, Potter JF (1965) Electric and magnetic properties of the strontium ferrates. J Chem Phys 43:1907–1913

    Google Scholar 

  • Mariano AN (1980) The application of catholuminescence for carbonatite exploration and characterization. In: Braga CJ (ed). Brasil Departamento Nacional de Producao Mineral:39–57

  • McCarthy GJ, White WB, Roy R (1969) Phase equilibria in the 1,375°C isotherm of the system Sr-Ti-O. J Am Cer Soc 52:463–467

    Google Scholar 

  • McDowell SD (1979) Chevkinite from the Little Chief granite porphyry stock, California. Am Mineral 64:721–727

    Google Scholar 

  • McKie D (1966) Fenitization. In: Carbonatites. Tuttle OF, Gittins J (eds). Interscience John Wiley: New York

    Google Scholar 

  • Mitchell RS (1966) Virginia metamict minerals: Perrierite and chevkinite. Am Mineral 51:1394–1405

    Google Scholar 

  • Nickel EH (1964) Latrappite — A proposed new name for the perovskite-type calcium niobate mineral from the Oka Area of Quebec. Can Mineral 8:121–122

    Google Scholar 

  • Nickel EH, McAdam RC (1963) Niobian perovskite from Oka, Quebec; a new classification of the perovskite group. Can Mineral 7:683–697

    Google Scholar 

  • Palmier A, Plugfelder PM, Cuevas FK (1974) Contribucion a la geologia regional del area Ne'a-Cerro Sarambi. Rev Soc Cientifica 14:63–66

    Google Scholar 

  • Pauling L (1948) The nature of the chemical bond. Second edition, Cornell Univ Press: Itaca, New York

    Google Scholar 

  • Peng TC, Chang CH (1965) New varieties of lamprophyllite-baryolamprophyllite and orthorhombic lamprophyllite. Scientia Sinica 14:1827–1840

    Google Scholar 

  • Perchuk LL, Ryabchikov ID (1968) Mineral equilibria in the system nepheline-alkali feldspar-plagioclase and their petrological significance. J Petrol 9:123–167

    Google Scholar 

  • Powell M, Powell R (1977) A nepheline-alkali feldspar geothermometer. Contrib Mineral Petrol 62:193

    Google Scholar 

  • Pecora WT (1942) Nepheline syenite pegmatites, Rocky Boy Stock, Bearpaw Mountains, Montana. Am Mineral 27:397–424

    Google Scholar 

  • Pecora WT (1956) Carbonatites: A review. Bull Geol Soc Am 67:1537–1556

    Google Scholar 

  • Portnov AM (1964) Strontium perrierite in the North Baikal region. Dok Acad Sci USSR Earth Sci Sec 156:118–120

    Google Scholar 

  • Segalstad TV, Larsen AO (1978) Chevkinite and perrierite from the Oslo region, Norway. Am Mineral 63:499–505

    Google Scholar 

  • Saburi O (1961) Semiconducting bodies in the family of barium titanates. J Am Cer Soc 44:54–63

    Google Scholar 

  • Shannon RD, Prewitt CT (969) Effective ionic radii in oxides and fluorides. Acta Cryst B25:925–945

    Google Scholar 

  • Smith JV (1974) Feldspar minerals. 2. Chemical and textural properties. Springer Verlag: Berlin

    Google Scholar 

  • Soloréva AE, Gavrich AM (1974) The X-ray diffraction study of solid solutions in the strontium cerate-strontium zirconate (SrCeO3-SrZrO3) system. Chem Abstr 81 (30301 p.):321

    Google Scholar 

  • Sutherland DS (1965) Potash-trachytes and ultra-potassic rocks associated with the carbonatite complex of the Toror Hills, Uganda. Mineral Mag 35:363–378

    Google Scholar 

  • Takano M, Kawachi J, Nakanishi N, Takeda Y (1981) Valency state of the Fe ions in Sr1-yLayFeO3. J Solid State Chem 39:75–84

    Google Scholar 

  • Templeton DH, Dauben CH (1954) Lattice parameters of some rare earth compounds and a set of crystal radii. J Am Chem Soc 76:5237–5239

    Google Scholar 

  • Ulbrich HHGJ, Gomes CB (1981) Alkaline rocks from continental Brazil: A review. Earth Sci Rev 17:135–154

    Google Scholar 

  • Uusimäki A, Vähäkangas J, Leppavouri S (1981) Reaction rates of BaTiO3 and SrTiO3. J Am Cer Soc 65:147–149

    Google Scholar 

  • Variainen H, Woolley AR (1976) The petrography, mineralogy and chemistry of the fenites of the Sokli carbonatite intrusion, Finland. Geol Surv Fin Bull 280

  • Viladkar SG (1980) The fenitized aureole of the Newania carbonatite, Rajasthan. Geol Mag 117:285–292

    Google Scholar 

  • Vlasov KA (1966) Geochemistry and mineralogy of rare elements and genetic types of their deposits. II. Mineralogy of Rare Elements. Israel Prog for Sci Translations: Jerusalem

    Google Scholar 

  • Vlasov KA (1968) Geochemistry and mineralogy of rare elements and genetic types of their deposits. III. Genetic types of rareelement deposits. Israel Prog for Sci Translations: Jerusalem

    Google Scholar 

  • Vorobiev EI, Konev AA, Malyshonok YA, Afonina GG, Spozhnikov AN (1982) Tausonite (SrTiO3). Int Min Ass Comm on New Minerals and New Mineral Names Abstr:82–77

  • von Eckermann H (1943) The alkaline rocks of the Alnö island. Sveriges Geol Undersokning Mem 36

  • von Eckermann H (1966) Progress of research on the Alnö carbonatite. In: Tuttle OF, Griffins J (eds). Interscience John Wiley: New York

    Google Scholar 

  • Winkle LW, Muan A (1973) Phase relations in the system SrSiO3-CaSiO3-BaSiO3. In: Gray TJ (ed). Proc of the Int Conf on Strontium containing compounds. Atlantic Industrial Research Inst: Ottawa

    Google Scholar 

  • Woolley AR (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Mineral Mag 46:13–17

    Google Scholar 

  • Wyllie PJ (1966) Experimental studies of carbonatite problems: The origin and differentiation of carbonatite magmas. In: Tuttle OF, Gittens J (eds). Carbonatites, Interscience John Wiley: New York

    Google Scholar 

  • Young EJ, Powers HA (1960) Chevkinite in volcanic ash. Am Mineral 45:875–881

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haggerty, S.E., Mariano, A.N. Strontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South America. Contr. Mineral. and Petrol. 84, 365–381 (1983). https://doi.org/10.1007/BF01160288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160288

Keywords

Navigation