Mineralogy and Petrology

, Volume 46, Issue 2, pp 109–121 | Cite as

The Dolodau dykes, Canada: An example of an archean carbonatite

  • L. Paul Bédard
  • E. H. Chown


The Archean Dolodau carbonatite dykes occur near a late tectonic syenite stock located in the Northern Volcanic Zone of the Abitibi greenstone belt. The biotite sovite and amphibole-biotite silicocarbonatite dykes produced fenitization of the host rocks. The Dolodau carbonatites compare favourably with Phanerozoic carbonatites in petrography, mineralogy and geochemistry. An Archean age is suggested by field geology and the isotope data available. The similarities suggest that Archean carbonatite petrogenetic processes were similar to modern day processes.


Geochemistry Host Rock Isotope Data Greenstone Belt Volcanic Zone 

Die Dolodaugänge, Kanada: ein Beispiel eines archaischen Karbonatites


Die archaischen Karbonatitgänge von Dolodau liegen in der Nähe eines spättektonischen Syenit-Stockes in der nördlichen vulkanischen Zone des Abitibi Greenstone Belts. Die Biotit-Sovit- and Amphibol-Biotit Silicokarbonatit-Gänge führten zu Fenitisierung der umgebenden Gesteine. Die Dolodau-Karbonatite lassen sich gut mit phanerozoischen Karbonatiten vergleichen, was Petrographie, Mineralogie and Geochemie betrifft. Ein archaisches Alter wird durch Geländebeziehungen and Isotopendaten belegt. Diese Ähnlichkeiten weisen darauf hin, daß archaische Karbonatit-bildende Vorgänge ihren modernen äquivalenten ähnlich sind.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard GO, Caty JL, Gobeil A (1985) The Archean Supracrustal Rocks of the Chibougamau Area. In:Ayres LD, Thurston PC, Card KD, Weber W (eds) Evolution of Archean Supracrustal Sequences. Geol Ass Can, Special Paper 28, pp 55–63Google Scholar
  2. Allegre CJ, Staudacher T, Sarda P, Kurz M (1983) Constraint on the evolution of Earth's mantle from rare gas systematics. Nature (Lond) 303: 762–766Google Scholar
  3. Barron KM, Duke NA, Hodder R W (1989) A high level Archean alkaline-carbonatite complex, Springpole Lake, N.W. Ontario; Geol Ass Can/Min Ass Can, Annual Meeting, Program with Abstracts, 14: A72Google Scholar
  4. Bédard LP (1987) Le Stock de Dolodau: Syénite et carbonatite associées. M. Sc. A. unpublished Thesis, Université du Québec á Chicoutimi, Chicoutimi, Québec, 149ppGoogle Scholar
  5. —— (1990) Instrumental neutron activation analysis by collecting only one spectrum: results for international geochemical reference samples. Geostandards Newsletter 14: 479–484Google Scholar
  6. Campbell IH, Jarvis GT (1984) Mantle convection and early crustal evolution. Precambrian Res 26: 15–56Google Scholar
  7. Chown EH, Daigneault R, Mueller W (1990) Geological setting of the eastern extremity of the Abitibi belt. In:Guha J, Chown EH, Daigneault R (eds) Litho-tectonic framework and associated mineralization of the eastern extremity of the Abitibi greenstone belt [Field Trip 3]. Geol Surv Can Open File 2158, pp 1–32Google Scholar
  8. Condie KC (1976) Plate tectonics and crustal evolution. Pergamon Press, New York, 288 ppGoogle Scholar
  9. —— (1981) Archean greenstone belts. Developments in Precambrian Geology 3, 434 ppGoogle Scholar
  10. Daigneault R, Archambault G (1990) Les grands couloirs de deformation de la sous-province de l'Abitibi. In:Rive M, Yerpaelst P, Riverain G, Simard A, Lulin JM, Gagnon Y (eds) The northwestern Quebec polymetallic belt. Can Inst Min Metal Special 43: 43–64Google Scholar
  11. Deer WA, Howie RA, Zussman J (1966) An introduction to the rock-forming minerals. Longman Group Limited, Essex, England, 528ppGoogle Scholar
  12. Dimroth E, Archambault G, Goulet N, Guha J, Mueller W (1984) A mechanical analysis of the late Archean Gwillim Lake shear belt, Chibougamau area, Québec. Can J Earth Sci 21: 963–968Google Scholar
  13. Gittins J (1989) The origin and evolution of carbonatite magmas. In:Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 580–600Google Scholar
  14. Haskin LA, Haskin MA, Frey FA, Wilderman TR (1968) Relative and Absolute Terrestrial Abundance of the Rare-Earth. In:Ahrens LH (ed) Origin and Distribution of the Elements. Pergamon, New York, pp 889–912Google Scholar
  15. Heinrich EW (1966) The Geology of Carbonatite. John Wiley and Sons, New York, 555ppGoogle Scholar
  16. Hogarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In:Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 105–148Google Scholar
  17. Larsen LM, Rex DC, Secher K (1983) The Age of Carbonatite, Kimberlites and Lamprophyres from Southern West Greenland: Recurrent Alkaline Magmatism During 2500 Million Years. Lithos 16: 215–221Google Scholar
  18. Leake BF (1978) Nomenclature of Amphiboles. Can Miner 16: 501–520Google Scholar
  19. Martin H (1986) Effects of steeper Archean geothermal gradient on geochemistry of subduction zone magmas. Geology 14: 753–756Google Scholar
  20. Moore AC (1984) Orbicular rhythmic layering in the Palabora carbonatite, South Africa. Geol Mag 121: 53–60Google Scholar
  21. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxene. Am Miner 73: 1123–1133Google Scholar
  22. Moukhsil A (1991) Structure et géochimie du batholite de Waswanipi (Partie nord de la ceinture archéenne d'Abitibi) M.Sc. Unpublished Thesis, Université du Québec á Chicoutimi, 128ppGoogle Scholar
  23. Nakamura N (1974) Determination of REE, Ba, Mg, Na and K in Carbonaceous and Ordinary Chondrites. Geochim Cosmochim Acta 38: 757–775Google Scholar
  24. Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatite and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52: 1–17.Google Scholar
  25. Nisbet EG (1987) The young earth: an introduction to Archaean geology. Allen and Unwin, Massachusetts, USA, 402ppGoogle Scholar
  26. O'nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modeling of the mantle differentiation and crustal growth. J Geophys Res 84: 6091–6102Google Scholar
  27. Picard C, Piboule M (1986) Pétrologie des roches volcaniques du sillon de roches vertes archéennes de Matagami-Chibougamau á l'ouest de Chapais (Abitibi est, Québec). 2. Le groupe hautement potassique d'Opémisca. Can J Earth Sci 23: 1169–1189Google Scholar
  28. Proulx M (1990) Géologie de la région de lacs Esther et Wedding, Cantons Currie et Grevet, projet lac Madeleine. Min Energie Ress, Que. MB 89-67, 96ppPrud'homme N (1991) Caractérisation pétrographique et géochimique de la carbonatite et de la syénite de la mine Lac Shortt, M.Sc. Unpublished Thesis, Université du Québec á Chicoutimi, 64ppGoogle Scholar
  29. Quirion D (1990) The Lac Shortt Carbonatite. In:Guha J, Chown EH, Daigneault R (eds) Litho-tectonic framework and associated mineralization of the eastern extremity of the Abitibi greenstone belt. Geol Surv Can Open File 2158: 116–131Google Scholar
  30. Robinson P, Spear FS, Schumacher JC, Laird J, Klein C, Evans BW, Doolan BL (1981) Phase relations of metamorphic amphiboles: natural occurrence and theory. In:Veblen DR, Ribbe PH (eds) Amphiboles: Petrology and Experimental Phase Relations. Min Soc Am Reviews in Mineralogy 9B: 1–228Google Scholar
  31. Shaw DM, Dostal J, Keays RR (1976) Additional estimates of continental surface Precambrian Shield composition in Canada. Geochim Cosmochim Acta 40: 73–83Google Scholar
  32. ——, Reilly GA, Muysson JR, Pattenden GE, Campbell FE (1967) An estimate of the chemical composition of the Canadian Precambrian shield. Can J Earth Sci 4: 829–853Google Scholar
  33. Simonen A (1990) The Precambrian in Finland. Geol Surv Finland Bull 304: 1–58Google Scholar
  34. Steiger RH, Jaeger E (1977) Subcommission of geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Let 36: 359–362Google Scholar
  35. Thompson RN (1982) Magmatism of the British Tertiary volcanic province. Scott J Geol 18: 49–107Google Scholar
  36. —— (1983) Continental flood basalt ... arachnids rule OK? In:Hawkesworth CJ, Norry NJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing, Orpinton, pp 159–185Google Scholar
  37. Treiman AH, Schedl A (1983) Properties of Carbonatite Magmas and Processes in Carbonatitic Magma Chambers. J Geol 91: 437–447Google Scholar
  38. Verwoerd WJ (1966) Fenitization of basic igneous rocks. In:Tuttle OF, Gittins J (eds) Carbonatites. John Wiley and Sons, New York, pp 295–308Google Scholar
  39. Wass SY, Roger NW (1980) Mantle metasomatism-precursor to continental volcanism. Geochim Cosmochim Acta 44: 1811–1823Google Scholar
  40. Woolley AR (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Miner Mag 46: 13–17Google Scholar
  41. —— (1987) Alkaline Rocks and Carbonatites of the World, Part 1: North and South America. University of Texas Press, Austin, Texas, 216ppGoogle Scholar
  42. —— (1989) The spatial and temporal distribution of carbonatites. In:Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 15–37Google Scholar
  43. —— (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In:Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 1–14Google Scholar
  44. Wyllie PJ, Baker MB, White BS (1990) Experimental boundaries for the origin and evolution of carbonatites. Lithos 26: 3–19Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • L. Paul Bédard
    • 1
  • E. H. Chown
    • 1
  1. 1.Sciences de la terre, Université du Québec á Chicoutimi, 555, boulevard de l'Université ChicoutimiQuébecCanada

Personalised recommendations