Skip to main content
Log in

A garnet-cordierite granite porphyry containing rapakivi feldspars in the Cabeza de Araya batholith (extremadura, spanish Hercynian belt)

Eine Rapakivi-Feldspat führender Granat-Codierit-Granitporphyr aus dem Cabeza de Araya Batholith (Extremadura, Hereynischer Gürtel, Spanien)

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The garnet-cordierite granite porphyry is a large dyke associated with the Cabeza Araya batholith. The batholith shows “S” typology but with intermediate characteristics between the aluminous granite series, spatially and genetically related to the Hercynian regional metamorphism, and the calc-alkaline series of the Iberian massif. The granite porphyry is rich in megacrystic alkali feldspar often with rapakivi texture. Its mineralogy consists mainly of quartz + plagioclase + alkali feldspar + biotite I + cordierite I + garnet + biotite 11 + cordierite II ± muscovite + chlorite.

Cordierite-garnet thermobarometry and stability relationships of ternary feldspars are used to estimate the T-P conditions of crystallization and the evolution of these rocks. The equilibrium temperature obtained from the cordierite-garnet pair is about 800°C (4 ± 0.5 Kb). This shows the xenocrystic origin of cordierite and garnet, in accordance with other geological and textural evidence. Garnet transformation, the genesis of Cordierite II and the formation of mantled textures are interpreted as the result of an isothermal decompression accompanying the emplacement of the porphyry.

Zusammenfassung

Der Granat-Cordierit-Granit stellt einen mit dem Cabeza Araya Batholith assoziierten, mächtigen Gang dar. Der Batholith zeigt S-Typ Charakter, jedoch mit Čbergangsmerkmalen zu aluminösen Granitserien, und steht räumlich und genetisch im Zusammenhang mit der hercynischen Regionalmetamorphose und den Kalkalkaliserien des iberischen Massivs. Der Granitporphyr führt häufig Megakristalle von Alkalifeldspat, die oft Rapakivitextur zeigen. Die Mineralogie des Granitporphyr besteht aus Quarz + Plagioklas + Alkalifeldspat + Biotit 1 + Cordierit 1 + Granat + Biotit II + Cordierit II ± Muscovit ± Chlorit. Die P-T Bedingungen der Kristallisation und die magmatische Entwicklung dieser

Die wurde, P-T Bedingungen der Kristallisation und die magmatische Entwicklung dieser Gesteine wurde, unter Anwendung der Cordierit-Granat Thermobarometrie und den Stabilitätsbeziehungen der Feldspäte, ermittelt. Die Gleichgewichtstemperatur aus Cordierit-Granat-Paaren beträgt um 800°C (4 ± 0.5 Kb). Dies zeigt die Bildung von Cordierit und Granat als Xenokristalle, in Übereinstimmung mit anderen geologischen und texturellen Merkmalen. Die Transformation des Granat. die Genese von Cordierit II und das Entstehen von “mantled” Texturen, kann als Resultat einer isothermalen Dekompression interpretiert werden, die die Platznahme des Porphyrs begleitet hat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott NA Jr (1978) Peritectic reactions in the system An-Ab-Or-Qz-H20. Can Mineral 16: 245–256

    Google Scholar 

  • Amice M (1990) Le complexe granitique de Cabeza de Araya (Extremadure, Espagne). Thesis, University of Toulouse 111, 225pp

  • Aparicio A (1971) Estudio geologico del Macizo Cristalino de Toledo. Estudios Geológicos 24:479–487

    Google Scholar 

  • Aparicio A, Grachev A, Drubetskoy E, Novitsky I (1990) Dataciones K/Ar en la unidad magmática de Toledo. Bol Geol Min Esp 101: 468–472

    Google Scholar 

  • Aranovich LYa, Podleskii KK (1983) The Cordierite-Garnet-Sillimanite-Quartz equilibrium: experiments and applications. In:Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, Berlin Heidelberg New York Tokyo, pp 173–198

    Google Scholar 

  • Ashworth JR, Chinner GA (1978) Coexisting garnet and cordierite in migmatites from the Scottish Caledonides. Contrib Mineral Petrol 65: 379–394

    Google Scholar 

  • Bussy F (1990) The rapakivi texture of feldspars in a plutonic mixing environment: a dissolution-recrystalization process? Geological J 25: 319–324

    Google Scholar 

  • Capdevila R, Corretgé LC, Floor P (1973) Les granitoides varisques de la Meseta Iberique. Bull Soc Geol de France 7, XV, 3-4: 209–228

    Google Scholar 

  • Chappell W White AJR (1974) Two contrasting granite types. Pacific Geol 8: 173–174

    Google Scholar 

  • Cherry ME, Trembath LT (1978) The pressure quench formation of rapakivi texture. Contrib Mineral Petrol 68: 1–6

    Google Scholar 

  • Clarke DB (1981) The mineralogy of peraluminous granites: a review. Can Mineral 19:3–17

    Google Scholar 

  • Corretgé LG (1971) Estudio7petrólogico del batolito de Cabeza de Araya (Cáceres-España). Thesis, University of Salamanca, 453 pp (unpublished)

  • Corretgé LG (1972) Contribución para et conocimiento del batolito de Cabeza de Araya (Cáceres-España): El microgranito granatifero cordieritico con megacristales feldespáticos. Studia Geol Univ Salamanca 3: 43–65

    Google Scholar 

  • Corretgé LG, Ugidos JM, Martinez FJ (1977) Les series granitiques varisques du secteur centre-occidental espagnol. La Chaine varisque d'Europe Moyenne et Occidentale. Coll Intern C N R. S 243: 453–461

    Google Scholar 

  • Corretgé LG, Bea F, Surirez O (1985) Las caracteristicas geoquímicas del batolito de Cabeza de Araya (Cáceres-España): implicaciones petrogenéticas. Trab Geol Univ Oviedo 15: 219–238

    Google Scholar 

  • Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans Roy Soc Edinburgh 73: 135–149

    Google Scholar 

  • Elliston JN (1985) Rapakivi textures: an indication of the crystallization of hydrosilicates 11. Earth Sci Rev 22: 11–92

    Google Scholar 

  • Gil Ibarguchi JI, Martinez FJ (1982) Petrology of garnet-cordierite-sillimanite gneisses from the El Tormes Thermal Dome, Iberian Hercynian foldbelt (NW Spain). Contrib Mineral Petrol 80: 14–20

    Google Scholar 

  • Goldman DS, Albee AL (1977) Correlation of Mg/Fe partioning between garnet and biotite quartz and magnetite. Am J Sci 277: 750–761

    Google Scholar 

  • Hibbard MJ (1981). The magma mixing origin of mantled feldspars. Contrib Mineral Petrol 76: 158–170

    Google Scholar 

  • Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contrib Mineral Petrol 63: 175–198

    Google Scholar 

  • Martignole J, Sisi JCh (1981) Cordierite-garnet-H2O equilibrium: a geological thermometer, barometer and water fugacity indicator. Contrib Mineral Petrol 77: 38–46

    Google Scholar 

  • Martinez FJ, Corretgé LG, Suárez 0 (1990) Distribution, characteristics and evolution of metamorphism (Central-Iberian Zone). In:Dalmeyer RD, Martinez Garcia E (eds) Premesozoic geology of Iberia. Springer, Berlin Heidelberg New York Tokyo, pp 207–212

    Google Scholar 

  • Nekvasil H (1991) Ascent of felsic magmas and formation of rapakivi. Am Mineral 76: 1279–1290

    Google Scholar 

  • Perchuk LL (1967) Biotite-garnet geothermometer. Akad Nauk USSR Dokl 177: 411–414 (in Russian)

    Google Scholar 

  • Perchuk LL (1969) The effect of temperature and pressure on the equilibrium of natural iron-magnesium minerals. Int Geol Rev 11: 875–901

    Google Scholar 

  • Perchuk LL (1977) Thermodynamical control of metamorphic processes. In:Saxena SK, Bhattacharji S (eds) Energetics of geological processes. Springer, Berlin Heidelberg New York, pp 199–239

    Google Scholar 

  • Perchuk LL, Laurenteva IV (1983) Experimental investigation of exchange equilibria in the system Cordierite-Garnet-Biotite. In:Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, Berlin Heidelberg New York Tokyo, pp 199–239

    Google Scholar 

  • Perchuk LL, Podlesskii KK, Aranovich LYa (1981) Calculation of thermodynamic properties of end-member minerals from natural parageneses. In:Newton RC, Navrostsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Springer, Berlin Heidelberg New York, pp 111–129

    Google Scholar 

  • Pérez del Villar L (1988) El uranio en et batolito de Cabeza de Araya y en et C.E.G. del Borde Septentrional (Prov. de Cáceres). Thesis, University of Salamanca, 450 pp (unpublished)

  • Pouchou JL, Pichoi J (1984) A new model for quantitative X-ray microanalysis. Recher Aerospat 3: 167–192

    Google Scholar 

  • Saxena SK (1969) Silicate solid solutions and geothermometry 3. Distribution of Fe and Mg between coexisting garnet and biotite. Contrib Mineral Petrol 22: 259–267

    Google Scholar 

  • Schermerhorn LJG, Priem HNA, Boelrijk NAIM, Hebeda EH, Verdumen EATH, Verschure RH (1978) Age and origin of the Messjana dolerite fault-dike system (Portugal and Spain) in the ligh of the opening of the north Atlantic Ocean. J Geol 86: 299–309

    Google Scholar 

  • Stimac JA, Jacobs D (1991) Comparison of the tectonic setting and magmatic affiliations of rapakivi granites to rapakivi-bearing volcanic rocks in the western U.S. In:Haapala I, Ramo OT (eds) Symposium on Rapakivi Granites and Related Rocks. Geol Surv Finland Guide 34, 48 (Abstract)Stimac JA, Wark DA (1991) The origin and implications of the plagioclase mantles on sanidine in silicic volcanic rocks, Clear Lake,

  • Stimac JA, Wark DA (1991) The origin and implications of the plagioclase mantles on sanidine in silicic volcanic rocks, Clear Lake, California. In:Haapala I, Ramo OT (eds) (Abstract) Symposium on Rapakivi Granites and Related Rocks. Geol Surv Finland Guide 34, 49

  • Tuttle OF, Bowen L (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74:1–145

    Google Scholar 

  • Ugidos JM (1990) Granites as a paradigm of genetic processes of granitic rocks: I-types vs S-types. In:Dalmeyer RD, Martinez Garća E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin Heidelberg New York Tokyo, pp 189–206

    Google Scholar 

  • Vorma A (1971) Alkali feldspars of the Wiborg rapakivi massif in southeastern Finland. Bull Comm Geol Finland 246:1–72

    Google Scholar 

  • Wark DA, Stimac JA (1991) Experimental evidence for the origin of rapakivi texture by a dissolution- and diffusion-controled mechanism. In: Haapala I, Ramo OT (eds) Symposium on Rapakivi Granites and Related Rocks. Geol Surv Finland Guide 34, 60 (Abstract)

  • Whitney JA (1975) The effects of pressure, temperature, and XH 2O on phase assemblage in four synthetic rock composition. J Geol 83: 11–31

    Google Scholar 

  • Whitney JA (1988) The genesis of garnet: the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 200: 1886–1897

    Google Scholar 

  • Whitney JA, Stormer JC Jr (1977) Two-Feldspar geothermometry, geobarometry in mesozonal granitic intrusions: Three examples from the Piedmont of Georgia. Contrib Mineral Petrol 63: 51–64

    Google Scholar 

  • Yoder HS Jr, Stewart DB, Smith JR (1957) Ternary feldspars. Carnegie Inst Washington Yearbk 56: 206–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corretgé, L.G., Suárez, O. A garnet-cordierite granite porphyry containing rapakivi feldspars in the Cabeza de Araya batholith (extremadura, spanish Hercynian belt). Mineralogy and Petrology 50, 97–111 (1994). https://doi.org/10.1007/BF01160142

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160142

Keywords

Navigation