Skip to main content
Log in

A characterization of the fast-response time for differential inclusions

  • Published:
Mathematical notes of the Academy of Sciences of the USSR Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. G. Boltyanskii, Mathematical Methods of Optimal Control [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  2. R. B. Vinter, “Dynamic programming for optimal control problems with terminal constraints,” in: Recent Mathematical Methods in Dynamic Programming, I. Capuzzo Dolcetta, W. H. Fleming, and T. Zolezzi (eds.), Lect. Notes Math.,1119, Springer-Verlag, Berlin-New York (1985), pp. 190–202.

    Google Scholar 

  3. I. A. Nikiforova, “Krotov's optimality principle without differentiability assumptions,” in: The Method of Lyapunov Functions and Its Applications [in Russian], V. M. Matrosov and S. V. Vasil'ev (eds.), Nauka, Novosibirsk (1984), pp. 121–126.

    Google Scholar 

  4. A. I. Subbotin and N. N. Subbotina, “The optimal result function in a control problem,” Dokl. Akad. Nauk SSSR,266, No. 2, 294–299 (1982).

    Google Scholar 

  5. V. A. Vyazgin, “On the justification of the sufficient optimality conditions in the Weierstrass and the Hamilton-Jacobi-Bellman methods,” Avtomat. Telemekh., No. 4, 31–38 (1984).

    Google Scholar 

  6. F. H. Clarke, “Generalized gradients of Lipschitz functionals,” Adv. Math.,40, No. 1, 52–67 (1981).

    Google Scholar 

  7. M. F. Sukhinin, “On an analogue of the Bellman equation,” Mat. Zametki,38, No. 2, 265–269 (1985).

    Google Scholar 

  8. Yu. A. Belov, “On a certain generalization of the Bellman equation and the optimality conditions connected with it,” Uch. Zap. Kaliningradsk. Gos. Univ., No. 2, 58–83 (1968).

    Google Scholar 

  9. Yu. A. Belov, “The Bellman function corresponding to time-optimal response,” Uch. Zap. Kaliningradsk. Gos. Univ., No. 2, 85–102 (1968).

    Google Scholar 

  10. J. -P. Aubin and A. Cellina, Differential Inclusions, Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin-New York (1984).

    Google Scholar 

  11. R. T. Rockafellar, “Directionally Lipschitzian functions and subdifferential calculus,” Proc. London Math. Soc.,39, No. 3, 331–355 (1979).

    Google Scholar 

  12. R. T. Rockafellar, “Generalized directional derivatives and subgradients of nonconvex functions,” Can. J. Math.,32, No. 2, 257–280 (1980).

    Google Scholar 

  13. R. I. Kozlov, “On the theory of differential equations with discontinuous right-hand sides,” Differents. Uravn.,10, No. 7, 1264–1275 (1974).

    Google Scholar 

  14. P. Krcbec, “Weak stability of multivalued differential equations,” Czechoslovak Math. J.,26(101), No. 3, 470–476 (1976).

    Google Scholar 

  15. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Methods of Optimal Processes [in Russian], Nauka, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematicheskie Zametki, Vol. 40, No. 6, pp. 726–737, December, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarov, V.A. A characterization of the fast-response time for differential inclusions. Mathematical Notes of the Academy of Sciences of the USSR 40, 908–914 (1986). https://doi.org/10.1007/BF01158349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01158349

Keywords

Navigation