Skip to main content
Log in

Anomalies in the deformability of degassed metals at temperatures of reversible hydrogen embrittlement

  • Strength
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Hydrogen embrittlement of metals has been investigated by many researchers. However, the contradictions between experimental data and the existing concepts on the mechanism of hydrogen embrittlement explain the need for new experiments establishing additional factors affecting the time and temperature dependence of the ductility of hydrogen-charged metals. An analysis of the published data and results of experiments on hydrogen embrittlement are presented in the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Popov.Dynamic Deformation Aging and Hydrogen-Type Brittleness [in Russian], Nauka, Novosibirsk (1969).

    Google Scholar 

  2. V. P. Krylov and Z. L. Zlatin, “Deformability of commercial iron,”Metalloved. Term, Obrab, Met., No. 12, 41 - 43 (1976).

    Google Scholar 

  3. M. Taheri, S. Albrecht, I. M. Bernstein, and A. W. Thompson,Ser. Metall.,13(9). 871 - 875 (1979).

    Google Scholar 

  4. G. G. Nelson, “Hydrogen embrittlement,” in:Embrittlement of Structural Metals and Alloys [Russian translation], K. L. Brayont and S. K. Banerdji (eds.), Metallugiya, Moscow (1988).

    Google Scholar 

  5. A. V. Bobylev.Mechanical and Technological Properties of Metals [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  6. M. I. Kochnev, “On correspondence between the temperatures of anomalous changes in the properties of copper, its compounds and alloys.”Izv. Akad Nauk SSSR, Otd. Tekh. Nauk, No. 12, 96 - 105 (1956).

    Google Scholar 

  7. A. A. Presnyakov and V. V. Chervyakova,Nature of Ductility Minima in Metallic Alloys [in Russian], Nauka, Alma-Ata (1970)

    Google Scholar 

  8. P. Kotterill.HydrogenEmbrittlement of Metals [Russian translation]. Metallurgizdat, Moscow (1963).

    Google Scholar 

  9. B. A. Kolachev, V. A. Livanov, and A. A. Bukhanova,Mechanical Properties of Titanium and Its Alloys [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  10. G. Hörtz,Metall., No. 8, 731 - 737 (1976).

    Google Scholar 

  11. V. P. Krylov and V. I. Panov, “Temperature dependence of the ductility of hydrogen-charged commercial titanium and alloys VT3-1 and VT 15,”Metalloved. Term. Obrab. Met., No. 7 48 - 50 (1990).

    Google Scholar 

  12. B. A. Kolachev,Hydrogen Embrittlement of Metals [in Russian], Metallurgizdat, Moscow (1985).

    Google Scholar 

  13. M. A. Krishtall, Yu. V. Piguzov, and S. A. Golovin,Internal Friction in Metals and Alloys [in Russian], Metallurgiya, Moscow (1964).

    Google Scholar 

  14. N. A. Galaktionova,Hydrogen in Metals [in Russian], Metallurgiya, Moscow (1967).

    Google Scholar 

  15. K. D. McMagon, “Microductility of iron” in:Microductility [Russian translation], Metallurgiya, Moscow (1972).

    Google Scholar 

  16. J. L. Benson and P. Boch, “Inelastic effects in cold-worked nickel,”Acta Metallurgica, 26(8), 1243 - 1250 (1978).

    Google Scholar 

  17. A. K. Litvin and V. I. Tkachev, “Phenomenon of easier deformation and disruption of metal in the presence of hydrogen,”Fiz. Khim. Mekh. Met., 12(12), 27 - 34 (1976).

    Google Scholar 

  18. R. R. Hasiguti, N. Igata, and G. Kamashita,Acta Metallurgica,10(4), 442 (1962).

    Google Scholar 

  19. A. L. Eustice and O. N. Carlson,Trans. AIME,221(2), 238 (1961).

    Google Scholar 

  20. Mozazumi Shotaro and Mashida Jutaka,J. Jap. Inst. Metals,41(2), 1256 - 1264 (1978).

    Google Scholar 

  21. V. A. Finkel',Low-Temperature X-Ray Diffractometry [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  22. V. M. Azhazha, N. V. Vol'kenshtein, and V. E. Startsev, “Electrical conductivity of high-purity vanadium. Investigation ofT k. and anomalies in the temperature dependence,Fiz. Mekh. Met.,41(6), 1188 - 1195 (1976).

    Google Scholar 

  23. L. S. Moroz and B. B. Chechulin,Hydrogen Embrittlement of Metals [in Russian], Metallurgiya, Moscow (1967).

    Google Scholar 

  24. L. Mignolet,J. Chem. Phys.,23(4). 23 (1955).

    Google Scholar 

  25. B. F. Mattias,Helv. Phys. Acta,46. 6 - 7, 1030 (1968).

    Google Scholar 

  26. R. Cahn,Physical Metallurgy, Issue I (Atomic Structure of Metals and Alloys), Amsterdam (1965).

  27. A. K. Mindyuk, “Role of temperature in the formation of physicomechanical properties of metals,”Fiz. Khim, Mekh. Met.,23(2), 97 - 102 (1987).

    Google Scholar 

  28. A. I. Mezentsev and A. F. Mikhailov, “To the problem of call brittleness of metals,”Metalloved. Term. Obrab. Met., No. 5, 46 - 49 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, V.P. Anomalies in the deformability of degassed metals at temperatures of reversible hydrogen embrittlement. Met Sci Heat Treat 37, 495–498 (1995). https://doi.org/10.1007/BF01157072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01157072

Keywords

Navigation