Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Literature cited

  1. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for solition equations. V. Quasiperiodic solutions of the orthogonal KP equation,” Publ. RIMS,18, 1111–1119 (1982).

    Google Scholar 

  2. A. P. Veselov and S. P. Novikov, “Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations,” Dokl. Akad. Nauk SSSR,279, No. 1, 20–24 (1984).

    Google Scholar 

  3. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type,” Physica D,4, 343–365 (1982).

    Google Scholar 

  4. I. M. Krichever, “Methods of algebraic geometry in the theory of nonlinear equations,” Usp. Mat. Nauk,32, No. 6, 183–208 (1977).

    Google Scholar 

  5. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “Integrable systems. I,” Modern Problems of Mathematics. Fundamental Directions, Vol. 4, 179–285, VINITI, Moscow (1985).

    Google Scholar 

  6. J. Fay, “Theta-functions on Riemann surfaces,” Lect. Notes Math.,352, Springer-Verlag, Berlin (1973).

    Google Scholar 

  7. D. Mumford, Lectures on Theta-Functions [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  8. E. Arbarello and C. de Concini, “On a set of equations characterizing Riemann matrices,” Ann. Math.,120, 119–140 (1984).

    Google Scholar 

  9. B. A. Dubrovin, “Theta-functions and nonlinear equations,” Uspekhi Mat. Nauk,36, No. 2, 11–80 (1981).

    Google Scholar 

  10. A. Beauville,“Le probleme de Schottky et la conjecture de Novikov,” Exp. 675 Sem. Bourbaki, Asterisque 152–153, 101–112 (1988).

    Google Scholar 

  11. O. Debarre, “The trisecant conjecture for Pryms,” Proc. Symp. Pure Math.,49, No. 1, 621–626, Providence (1989).

    Google Scholar 

  12. A. Beauville and O. Debarre, “Sur le probleme de Schottky pour les varietes de Prym,” Ann. Scuola Normale Superiore Pisa, Ser. IV.V.XIV, 613–623 (1987).

  13. J. Fay, “Schottky relations on 1/2(C-C),” Proc. Symp. Pure Math.,49, No. 1, 485–502, Providence (1989).

    Google Scholar 

  14. I. A. Taimanov, “Prym varieties of ramified coverings and nonlinear equations,” Mat. Sb.,181, No. 7, 934–950 (1990).

    Google Scholar 

  15. B. A. Dubrovin, “Kadomtsev-Petviashvili equations and relations between periods of holomorphic differentials on Riemann surfaces,” Izv. Akad. Nauk SSSR, Ser. Mat.,19, No. 2, 285–296 (1982).

    Google Scholar 

  16. T. Shiota, “Characterization of Jacobian varieties in terms of soliton equations,” Inv. Math.,83, 333–382 (1986).

    Google Scholar 

  17. I. A. Taimanov, “On an analogue of the Novikov conjecture in a problem of Riemann-Schottky type for Prym varieties,” Dokl. Akad. Nauk SSSR,293, No. 5, 1065–1068 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematicheskie Zametki, Vol. 50, No. 1, pp. 98–107, July, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A. Prym's Theta-function and hierarchies of nonlinear equations. Mathematical Notes of the Academy of Sciences of the USSR 50, 723–730 (1991). https://doi.org/10.1007/BF01156609

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01156609

Keywords

Navigation