Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. O. M. Romaniv, “The mechanics of corrosion failure: primary results and prospects,” Visnik Akak. Nauk Ukr. RSR, No. 2, 29–41 (1981).

    Google Scholar 

  2. G. N. Nikiforchin, A. T. Tsirul'nik, A. Z. Student, B. N. Andrusiv, and Yu. N. Lenets, “A unit for investigating long-term static crack resistance in working media,” in: Methods and Means of Evaluating the Crack Resistance of Constructional Materials [in Russian], Naukova Dumka, Kiev (1981), pp. 286–289.

    Google Scholar 

  3. M. O. Speidel, “Branching of stress corrosion cracks in aluminum alloys,” in: The Theory of Stress Corrosion Cracking in Alloys, Brussels (1981), pp. 186–203.

  4. O. N. Romaniv and G. N. Nikiforchin, “Features of corrosion cracking kinetic curves of constructional alloys,” in: Methods and Means of Evaluating the Crack Resistance of Constructional Materials [in Russian], Naukova Dumka, Kiev (1981), pp. 251–258.

    Google Scholar 

  5. C. S. Carter, “Stress corrosion crack branching in high-strength steels,” Eng. Fract. Mech.,3, 1–13 (1971).

    Google Scholar 

  6. O. N. Romaniv, G. N. Nikiforchin, and N. L. Kuklyak, “The question of adsorption reduction of the crack resistance of steel in static loading,” Fiz.-Khim. Mekh. Mater., No. 1, 25–31 (1976).

    Google Scholar 

  7. K. Nakasa, H. Takei, and M. Yoshida, “The effect of temperature, initial stress intensity factors and loading speed on the crack branching in delayed failure,” Eng. Fract. Mech.,13, 667–677 (1979).

    Google Scholar 

  8. E. Mukai, “The use of the mechanical theory of fracture for evaluating cracking as the result of corrosion under stress of austenitic stainless steels and weld joints of these steels (Report 5). The influence of surrounding medium temperature on cracking as the result of corrosion under stress,” Esetsu Gakkaisi,48, No. 11, 937–944 (1979).

    Google Scholar 

  9. T. Aoki, M. Kanao, and T. Araki, “Delayed fracture crack growth characteristics of high-strength steels,” Tetsu Hagane, J. Iron Steel Inst. Jpn.,63, No. 7, 1134–1143 (1977).

    Google Scholar 

  10. V. A. Marichev, “Branching of cracks in corrosion cracking of high-strength materials,” Fiz.-Khim. Mekh. Mater., No. 2, 14–17 (1975).

    Google Scholar 

  11. P. J. Noronha and P. F. Packman, “Dependence of subcritical crack growth on effective stress intensities,” Eng. Fract. Mech.,10, 289–297 (1978).

    Google Scholar 

  12. I. M. Austen, R. Brook, and J. M. West, “Effective stress intensitites in stress corrosion cracking,” Int. J. Fract.,12, No. 2, 253–263 (1976).

    Google Scholar 

  13. G. P. Cherepanov and V. D. Kuliev, “On crack twinning,” Int. J. Fract.,11, No. 1, 29–38 (1975).

    Google Scholar 

  14. V. Vitek, “Plane-strain stress-intensity factors for branched cracks,” Int. J. Fract.,13, No. 4, 481–501 (1977).

    Google Scholar 

  15. H. Kitagawa and R. Yuuki, “Analysis of branched cracks under biaxial stresses,” Fracture,3, 201–211 (1977).

    Google Scholar 

  16. T. R. Wilshau, C. A. Rau, and A. S. Tetelman, “A general model to predict the elastic stress distribution and fracture strength on notched bars in plane-strain bending,” Eng. Fract. Mech.,1, 191–211 (1968).

    Google Scholar 

  17. O. N. Romaniv, G. N. Nikiforchin, and A. S. Krys'kiv, “The applicability of fracture mechanics criteria for determining the hydrogen brittleness of high-strength steels,” Fiz.-Khim. Mekh. Mater., No. 6, 54–60 (1980).

    Google Scholar 

  18. R. O. Richie, B. Francris, and W. Z. Server, “Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures,” Met. Trans.,8A, No. 6, 831–838 (1976).

    Google Scholar 

  19. T. K. Sergeeva, L. M. Angilovskaya, V. I. Malkin, and V. V. Pokidyshev, “The resistance to crack development in corrosion under stress of N18K9M5T maraging steel,” Metalloved. Term. Obrab. Met., No. 9, 41–44 (1976).

    Google Scholar 

  20. I. L. Rozenfel'd and V. A. Marichev, “The mechanism of crack growth in corrosion cracking of high-strength steels,” in: Corrosion Under Stress and Hydrogen Embrittlement. A Scientific Symposium [in Russian], Dresden (1975), pp. 402–407.

  21. B. F. Brown, C. T. Fujii, and E. P. Dahlberg, “Methods for studying the solution chemistry within stress corrosion cracks,” J. Electrochem. Soc.,116, 218–219 (1969).

    Google Scholar 

  22. P. Doig and P. E. J. Flewitt, “The electrode potential within a growing stress corrosion crack,” Proc. R. Soc. London,A357, No. 691, 439–452 (1977).

    Google Scholar 

  23. P. H. Melville, “Variation of potential in stress corrosion cracks,” Brit. Corrosion J.,14, 15–19 (1979).

    Google Scholar 

  24. D. A. Vermilyea and C. S. Tedmon, Jr., “A simple crevice corrosion theory,” J. Electrochem. Soc.,117, 437–440 (1970).

    Google Scholar 

  25. B. G. Ateya and H. W. Eickering, “On the nature of electrochemical reactions at a crack tip during hydrogen charging of a metal,” J. Electrochem. Soc.,122, 1018–1025 (1975).

    Google Scholar 

  26. O. V. Kurov, “Investigation of the influence of polarization on the crack resistance of 12Kh18N10T steel and AT3 titanium alloy in a chloride solution,” Fiz.-Khim. Mekh. Mater., No. 1, 80–81 (1979).

    Google Scholar 

  27. J. A. Smith, M. H. Peterson, and B. F. Brown, “Electrochemical conditions at the tip of an advancing stress corrosion crack in AISI 4340 steel,” Cotrosion,26, 539–542 (1970).

    Google Scholar 

  28. O. V. Kurov and R. K. Melekhov, “The potential and pH at the tip of a developing corrosion crack,” Zashch. Met.,15, No. 3, 314–316 (1979).

    Google Scholar 

  29. G. V. Karpenko, É. M. Gutman, I. E. Zamostyanik, and L. M. Gavrilenko, “An investigation of the microelectrochemical heterogeneity of metal structure,” Fiz.-Khim. Mekh. Mater., No. 3, 280–286 (1969).

    Google Scholar 

  30. R. M. Lazarenko-Manevich, L. A. Sokolova, and Ya. M. Kolotyrkin, “Modulation-spectroscopic investigation of the adsorption on electrodes. The acidity of water adsorbed on iron,” Elektrokhimiya,XIV, No. 12, 1779–1787 (1978).

    Google Scholar 

  31. O. N. Romaniv, Ya. N. Gladkii, and G. N. Nikiforchin, “One calculation hypothesis proposed for evaluating the influence of aggressive media on the cyclic crack resistance of metals and alloys,” Fiz.-Khim. Mekh. Mater., No. 5, 19–26 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 18, No. 1, pp. 35–47, January–February, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romaniv, O.N., Nikiforchin, G.N., Student, A.Z. et al. Two features in rating the corrosion crack resistance of constructional alloys. Mater Sci 18, 30–40 (1982). https://doi.org/10.1007/BF01156531

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01156531

Keywords

Navigation