Skip to main content
Log in

Trapped cracks at indentations

Part II Fracture mechanics model

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fracture-mechanics model for indentation cracking in phase-transforming materials is developed, based on the competing interaction of the tensile residual-mismatch field and the compressive contact-induced transformation field. In addition to the usual subthreshold and well-developed cracking ranges, the model predicts the trapping of cracks at indentations, within the transformation zone. As an example, the model is used to describe the dependence of radial crack length on indentation load in a range of yttria-tetragonal zirconia polycrystals (Y-TZP), explicitly addressing the trapping behaviour observed in Part I. The crucial parameters of the model obtained from the experimental fits, the size of the transformation zone relative to the contact impression,b/a, and the magnitude of the transformation stress relative to the hardness, σT/H, agree with independent measurements. Although applied to phase-transforming materials here, the principles of the model are generally applicable to systems with short-range, compensating stress fields competing with longer-ranged, dominant fields, leading to two discrete crack populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

Contact-impression semi-diagonal

b:

Contact-induced transformation-zone dimension

c:

Total crack length, c=l+s

cn :

Contact impression crack nucleus dimension, cn<s

f:

Stress-intensity factor weighting term, K=(Ha1/2)f

H:

Hardness

Kr :

Residual stress-intensity factor

Kt :

Transformation stress-intensity factor

l:

Radial crack length

P:

Indentation load

s:

Contact-impression tensile-zone dimension

T1 :

Toughness in the transformation zone

T2 :

Toughness outside the transformation zone

α:

Stress coefficient, σ=αH

σr :

Residual-stress-field amplitude

σt :

Transformation-stress-field amplitude

Ψ1 :

Crack-geometry parameter in the transformation zone

Ψ2 :

Crack-geometry parameter outside the transformation zone

References

  1. R. F. Cook, L. M. Braun andW. R. Cannon,J. Mater. Sci. Part I, in press.

  2. F. F. Lange, in “Fracture mechanics of ceramics” Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1974) P. 599.

    Google Scholar 

  3. D. J. Green, inibid.“ (Plenum Press, New York, 1983) P. 457.

    Google Scholar 

  4. M. V. Swain,J. Mater. Sci. 16 (1981) 151.

    Google Scholar 

  5. Y. Fu, A. G. Evans andW. M. Kriven,J. Amer. Ceram. Soc. 67 (1984) 626.

    Google Scholar 

  6. R. F. Cook andG. M. Pharr, in “Materials science and technology”, Vol. 11, edited by M. V. Swain (VCH, Weinheim, 1994) P. 339.

    Google Scholar 

  7. D. R. Clarke,Acta Metall. 28 (1980) 913.

    Google Scholar 

  8. B. R. Lawn andA. G. Evans,J. Mater. Sci. 12 (1977) 2195.

    Google Scholar 

  9. J. T. Hagan,ibid. 14 (1979) 2975.

    Google Scholar 

  10. S. S. Chiang, D. B. Marshall andA. G. Evans,J. Appl. Phys. 53 (1982) 298.

    Google Scholar 

  11. Idem, ibid. 53 (1982) 312.

    Google Scholar 

  12. K. Tanaka,J. Mater. Sci. 22 (1987) 1501.

    Google Scholar 

  13. W. Cheng andI. Finnie,ibid. 25 (1990) 575.

    Google Scholar 

  14. S. Lathabai, J. Rödel, T. Dabbs andB. R. Lawn,ibid. 26 (1991) 2157.

    Google Scholar 

  15. F. C. Frank andB. R. Lawn,Proc. Roy. Soc. A 299 (1967) 291.

    Google Scholar 

  16. R. Mouginot andD. Maugis,J. Mater. Sci. 20 (1985) 4354.

    Google Scholar 

  17. R. F. Cook andG. M. Pharr,J. Amer. Ceram. Soc. 73 (1990) 787.

    Google Scholar 

  18. D. J. Green, R. H. J. Hannink andM. V. Swain, “Transformation toughening of ceramics” (Crc Press, Boca Raton, 1989).

    Google Scholar 

  19. T. R. Lai, C. L. Hogg andM. V. Swain, in “Ceramic developments”, edited by C. C. Sorrell and B. Ben-Nissan, (Trans Tech Publications, Aedermannsdorf Switzerland, 1988) P. 1071; also inTrans. Iron Steel Inst. Jpn. 28 (1989) 240.

    Google Scholar 

  20. J. T. Hagan andM. V. Swain,J. Phys. D. 11 (1978) 2091.

    Google Scholar 

  21. J. T. Hagan,J. Mater. Sci. 15 (1980) 1417.

    Google Scholar 

  22. B. R. Lawn, T. P. Dabbs andC. J. Fairbanks,ibid. 18 (1983) 2785.

    Google Scholar 

  23. H. M. Chan andB. R. Lawn,J. Amer. Ceram. Soc. 71 (1988) 29.

    Google Scholar 

  24. M. Y. Khan, L. M. Brown andM. M. Chaudhri,J. Phys. D 25 (1992) A257.

    Google Scholar 

  25. M. J. Reece, P. L. Tetlow andC. Galiotis,J. Mater. Sci. Lett. 11 (1992) 575.

    Google Scholar 

  26. K. M. Liang, G. Orange andG. Fantozzi,J. Mater. Sci. 25 (1990) 207.

    Google Scholar 

  27. S.-Y. Liu andI.-W. Chen,J. Amer. Ceram. Soc. 74 (1991) 1206.

    Google Scholar 

  28. L. M. Braun andR. F. Cook, in “Science and technology of zirconia V”, edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Lancaster, Pa, USA, 1993) P. 386.

    Google Scholar 

  29. H. Tada, P. Paris andG. R. Irwin, “The stress analysis of cracks handbook”, (Del Research, St. Louis, 1973).

    Google Scholar 

  30. M. T. Laugier,J. Amer. Ceram. Soc. 68 (1985) C-51.

    Google Scholar 

  31. R. F. Cook andE. G. Liniger,J. Mater. Sci. 27 (1992) 4751.

    Google Scholar 

  32. R. M. Anderson andL. M. Braun,J. Amer. Ceram. Soc. 73 (1990) 3059.

    Google Scholar 

  33. K.-H. Heussner andN. Claussen,ibid. 72 (1989) 1044.

    Google Scholar 

  34. D. B. Marshall, J. J. Ratto andF. F. Lange,ibid. 74 (1991) 2979.

    Google Scholar 

  35. S. Srinivasan, R. O. Scattergood, G. Pfeiffer, R. G. Sparks andM. A. Paesler,ibid. 73 (1990) 1421.

    Google Scholar 

  36. D. B. Marshall, M. R. James andJ. R. Porter,ibid. 72 (1989) 218.

    Google Scholar 

  37. D. B. Marshall,ibid. 69 (1986) 173.

    Google Scholar 

  38. D. B. Marshall andM. R. James,ibid. 69 (1986) 215.

    Google Scholar 

  39. R. H. Dauskardt, W. C. Carter, D. K. Veirs andR. O. Ritchie,Acta Metall. Mater. 38 (1990) 2327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, R.F., Braun, L.M. Trapped cracks at indentations. J Mater Sci 29, 2192–2204 (1994). https://doi.org/10.1007/BF01154700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01154700

Keywords

Navigation