Skip to main content
Log in

Melting behaviour of cadmium particles embedded in an aluminium matrix

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An Al-4.5% Cd alloy has been manufactured by melt spinning to produce a microstructure of 14–150 nm diameter faceted cadmium particles embedded in an aluminium matrix. The melting behaviour of the cadmium particles has been investigated by differential scanning calorimetry. The melting point of 20 and 14 nm diameter cadmium particles embedded are depressed by 7 and 9 K respectively, below the bulk equilibrium cadmium melting point, because of Gibbs-Thomson capillarity effects. The average solid cadmium particle/aluminium matrix interfacial energy is 27 mJ m−2 higher than the average liquid cadmium particle/aluminium matrix interfacial energy. No significant superheating is needed to nucleate cadmium particle melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Cahn,Nature 323 (1986) 668.

    Google Scholar 

  2. Idem, ibid. 273 (1978) 491.

    Google Scholar 

  3. G. L. Allen, R. A. Bayles, W. W. Gile andW. A. Jesser,Thin Solid Films 144 (1986) 297.

    Google Scholar 

  4. P. R. Couchman andW. A. Jesser,Nature 269 (1977) 481.

    Google Scholar 

  5. V. P. Koverda,Phys. Metal. Metall. 51 (1981) 100.

    Google Scholar 

  6. S. J. Peppiatt andJ. R. Sambles,Proc. R. Soc. Lond. A345 (1975) 387.

    Google Scholar 

  7. S. J. Peppiatt,ibid. A345 (1975) 401.

    Google Scholar 

  8. V. G. Gryanzov, M. A. Gurskii, L. I. Trusov. andA. A. Aivazov,Sov. Phys. Solid State 24 (2) (1982) 297.

    Google Scholar 

  9. R. P. Berman andA. E. Curzon,Canad. J. Phys. 52 (1974) 923.

    Google Scholar 

  10. C. R. M. Wronski,Br. J. Appl. Phys. 18 (1967) 1731.

    Google Scholar 

  11. Ph. Buffat andJ-P. Borel,Phys. Rev. A 13 (1976) 2287.

    Google Scholar 

  12. G. L. Allen, W. W. Gile andW. A. Jesser,Acta Metall. 28 (1980) 1695.

    Google Scholar 

  13. H. Saka, Y. Nishikawa andT. Imura,Philos. Mag. A57 (1988) 895.

    Google Scholar 

  14. J. B. Boyce andN. Stutzmann,Phys. Rev. Lett. 54 (1985) 562.

    PubMed  Google Scholar 

  15. C. J. Rossouw andS. E. Donnelly,ibid. 55 (1985) 2960.

    PubMed  Google Scholar 

  16. D. L. Zhang andB. Cantor,Acta Metall. Mater. 39 (1991) 1595.

    Google Scholar 

  17. D. L. Zhang, K. Chattopadhyay andB. Cantor,J. Mater. Sci. 26 (1991) 1531.

    Google Scholar 

  18. T. B. Massalski, J. L. Murray, L. H. Mennett andH. Bakers, in “Binary Alloy Phase Diagram” (American Society for Metals, OH, 1986).

    Google Scholar 

  19. W. T. Kim, D. L. Zhang andB. Cantor,Met. Trans. 22A (1991) 2487.

    Google Scholar 

  20. “Metals Handbook”, 9th Edn (American Society for Metals, OH, 1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D.L., Hutchinson, J.L. & Cantor, B. Melting behaviour of cadmium particles embedded in an aluminium matrix. J Mater Sci 29, 2147–2151 (1994). https://doi.org/10.1007/BF01154693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01154693

Keywords

Navigation