Skip to main content
Log in

Heat transfer aspects of splat-quench solidification: modelling and experiment

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 1994

This article has been updated

Abstract

In this paper a combined theoretical and experimental study is reported on the process of solidification of a liquid metal droplet by impaction on a cold substrate (splat-quenching). The study is focused on the heat transfer aspects of this process and on the identification of parameters affecting the heat transfer mechanism. To this end, the effect of the droplet impact velocity and temperature, the effect of the substrate material and its initial temperature, and the effect of the thermal contact resistance between the splat and the substrate are investigated. A two-dimensional conduction model accounting for the freezing process in the splat and for the solidification kinetics has predicted reasonably well the trends observed in the experimental part of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 12 September 2004

    T. BENNETT and D. POULIKAKOS, J. Mater. Sci. 29 (1994) 2025

Abbreviations

c :

Specific heat

D :

Droplet diameter

g :

Gravitational acceleration

h a :

Heat transfer coefficient between splat and ambient

h c :

Heat transfer coefficient for splat-substrate interface

H :

Thickness of splat

k :

Thermal conductivity

K f :

Freezing kinetics coefficient

L :

Free-fall distance

L f :

Latent heat of freezing

Nu d :

Nusselt number (hD/k)

Pr :

Prandtl number (v/α)

r :

Radial distance

R :

Radius of splat

Re :

Reynolds number (uD/v)

t :

Time

t c :

Free-fall time

T :

Temperature

T f :

Freezing temperature of splat

T i :

Freezing interface temperature

T 0 :

Substrate temperature

T :

Ambient temperature

ΔT c :

Temperature drop across the splat-substrate interface

u :

Impact velocity of droplet

V :

Freezing interface velocity

z :

Axial distance

α:

Thermal diffusivity

v :

Kinematic viscosity

θ:

Instantaneous temperature difference between falling droplet and ambient

θa :

Initial temperature difference between falling droplet and ambient

1:

Liquid phase

s:

Solid phase

References

  1. H. Jones, “Rapid Solidification of Metals and Alloys”, Monograph 8 (Institution of Metallurgists, London, 1982).

    Google Scholar 

  2. E. Gutierrez-Miravete, PhD thesis, Massachusetts Institute of Technology (1985).

  3. S. Annavarapu, D. Apelian, andA. Lawley,Metall. Trans. 21A (1990) 3237.

    Google Scholar 

  4. R. H. Bricknell,ibid. 7A (1986) 583.

    Google Scholar 

  5. R. G. Brooks, C. Moore, A. G. Leatham andJ. S. Coombs,Powder Metall. 2 (1977) 100.

    Google Scholar 

  6. T. R. Anantharaman andC. Suryanarayana,J. Mater. Sci. 6 (1971) 1111.

    Google Scholar 

  7. P. Predecki, A. W. Mullendore andN. G. Grant,Trans. Metall. Soc. AIME 233 (1965) 1581.

    Google Scholar 

  8. W. E. Brower Jr,R. Strachan andM. C. Flemings,AFS Cast Met. Res. J. 6 (1970) 176.

    Google Scholar 

  9. M. G. Scott,J. Mater. Sci. 9 (1974) 1372.

    Google Scholar 

  10. G.-X. Wang andE. F. Matthys,Int. J. Rapid Solidifi. 6 (1991) 141.

    Google Scholar 

  11. Idem, Int. J. Heat Mass Transf. 35 (1992) 141.

    Google Scholar 

  12. P. H. Shingu andR. Ozaki,Metall. Trans. 6A (1975) 33.

    Google Scholar 

  13. D. E. Rosnar andM. Epstein,Chem. Eng. Sci. 30 (1975) 511.

    Google Scholar 

  14. P. V. Evans andA. L. Greer,Mater. Sci. Eng. 98 (1988) 357.

    Google Scholar 

  15. P. Mathur, D. Apelian andA. Lawley,Acta Metall. 37 (1989) 429.

    Google Scholar 

  16. E. Gutierrez-Miravete, E. J. Lavernia, G. M. Trapaga, J. Szekely andN. J. Grant,Metall. Trans. 20A (1989) 71.

    Google Scholar 

  17. W. Ranz andW. Marshall,Chem. Eng. Prog. 48 (1952) 141.

    Google Scholar 

  18. D. A. Anderson, J. C. Tannehill andR. H. Pletcher, “Computational Fluid Mechanics and Heat Transfer”. (Hemisphere, New York 1984) p. 117.

    Google Scholar 

  19. T. D. Bennett, Ms Thesis, University of Illinois at Chicago (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, T., Poulikakos, D. Heat transfer aspects of splat-quench solidification: modelling and experiment. J Mater Sci 29, 2025–2039 (1994). https://doi.org/10.1007/BF01154677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01154677

Keywords

Navigation