Skip to main content
Log in

Cyclic stress effects on the grain boundary cracking in Al-Mg solid solution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The difference in the grain boundary deformation between statically and cyclically crept specimens of Al-Mg solid solution has been investigated at the temperature of 580 K and for the peak stress level of 15 to 20 M Pa. In statically crept specimens, the grain boundaries deform irregularly and no crack is formed either at the triple point or along the serrated boundaries. However, in cyclically crept specimens, where the stress frequency, stress amplitude and the ratio of on-load to off-load time are 3 cycles per minute, 90% of maximum peak stress and less than 1, respectively, the grain boundaries remain smooth and wedge-type cracks are formed at the triple points, which results in intercrystalline fracture. On the basis of the experimental observations it is believed that cyclic stressing enhances grain boundary sliding through an accelerated recovery with the help of mechanically generated excess vacancies during cycling. However, due to the constraints of the grain alignment, boundary sliding becomes very difficult and creates an intercrystalline fracture at a triple point. On the other hand, under static stress, since the grain boundary is serrated to decrease the stress concentration at a triple point, a crack hardly forms at the triple point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Brunner andN. J. Grant,Trans. AIME 215 (1959) 48.

    Google Scholar 

  2. H. C. Chang andN. J. Grant,J. Metals (May 1956)8,Trans. AIME 206 (1956) 544.

    Google Scholar 

  3. Idem, ibid. (February, 1953) 305.

  4. I. S. Choi andS. W. Nam, Korea Patent No. 85-1260 (1985).

  5. C. J. Smithells, “Metals Reference Book”, Vol. 1 (Butterworths, London, 1978) p. 301.

    Google Scholar 

  6. P. Yavari andT. G. Langdon,Acta Metall. 30 (1982) 2181.

    Google Scholar 

  7. H. Oigawa, K. Sugawara andS. Karashima,Scripta Metall. 10 (1976) 885.

    Google Scholar 

  8. W. A. Rachinger,J. Inst. Metals 81 (1952–53) 33.

    Google Scholar 

  9. K. W. Snowden,Phil. Mag. 14 (1966) 1019.

    Google Scholar 

  10. A. H. Cottrell, “Structural Processes in Creep” (Iron and Steel Institute, London, 1961) p. 1.

    Google Scholar 

  11. A. N. Stroth,Proc. R. Soc. A218 (1953) 391.

    Google Scholar 

  12. P. W. Davies, R. N. Stevens andB. Wilshire,J. Inst. Metals 94 (1966) 49.

    Google Scholar 

  13. C. A. P. Horton,Acta. Metall. 18 (1970) 1159.

    Google Scholar 

  14. J. L. Lytton, C. R. Barrett andO. D. Sherby,Trans. AIME 233 (1965) 1399.

    Google Scholar 

  15. A. J. Kennedy, in Proceedings of International Conference on Fatigue Metals, 1956, London, p. 401.

  16. D. H. Shin, I. S. Choi andS. W. Nam,J. Mater. Sci. Lett. 2 (1983) 688.

    Google Scholar 

  17. P. S. G. Bennett andJ. T. Evans,Met. Sci. Eng. 38 (1979) 111.

    Google Scholar 

  18. T. S. Ke,Phys. Rev. 71 (1947) 533.

    Google Scholar 

  19. J. L. Walter andH. E. Cline,Trans. AIME 242 (1968) 1823.

    Google Scholar 

  20. T. Watanabe andP. W. Davies,Phil. Mag. A37 (1978) 649.

    Google Scholar 

  21. T. Watanabe, M. Yamada, S. Shima andS. Karashima,ibid. A40 (1979) 667.

    Google Scholar 

  22. K. E. Puttick andB. Tuck,Acta Metall. 13 (1965) 1043.

    Google Scholar 

  23. H. Riedel, “Elastic-Plastic Fracture”, ASTM STP 83, edited by C. F. Shih and J. P. Gudas (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1981) p. 1–505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, K.T., Nam, S.W. Cyclic stress effects on the grain boundary cracking in Al-Mg solid solution. J Mater Sci 23, 1171–1181 (1988). https://doi.org/10.1007/BF01154575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01154575

Keywords

Navigation