Journal of Materials Science

, Volume 30, Issue 19, pp 4839–4846 | Cite as

Observations on crystal growth mechanisms in the directionally solidified high temperature superconductor Y1Ba2Cu3O7−δ

  • E. J. Hardman
  • D. G. McCartney
  • X. Yao


The growth behaviour of Y1Ba2Cu3O7−δ(Y1-2-3) crystals has been studied by horizontal directional solidification of samples heated into the liquid (L) plus Y2Ba1Cu1O5(Y2-1-1) phase field. Cylindrical samples of initially stoichiometric Y1-2-3 composition were solidified at rates ranging from 1 to 10 mm h−1 using temperature gradients between 2.5 and 5 K mm−1. A novel method was employed to support the L+Y2-1-1 semi-solid and minimize reaction with the crucible. Selected samples were quenched during solidification so that growth mechanisms could be studied. Quasi-single crystals of Y1-2-3 formed, providing that the growth rate did not exceed 1 mm h−1 and that the temperature gradient was > 3.5 K mm−1. The quasi-single crystals contained particles of Y2-1-1 as well as Ba-Cu-rich bands as secondary phases and had a preferred orientation of [001] at 45° to the growth axis when grown from a polycrystalline seed crystal. No preferred orientation developed when samples were grown without a seed. In quenched samples, macroscopic growth steps were observed on the (001) plane, and within the cylindrical sample the faces of the growing crystal were found to be mutually perpendicular planes. During solidification liquid was found to be lost from the L+Y2-1-1 semi-solid region of the sample. This occurred both by wetting of the support bars and by liquid migration into the seed crystal region.


Prefer Orientation Growth Mechanism Phase Field High Temperature Superconductor Directional Solidification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Murakami,Supercond. Sci. Technol. 5 (1992) 185.CrossRefGoogle Scholar
  2. 2.
    P. J. McGinn, W. Chen andN. Zhu,J. Metals 43 (March 1991) 26.Google Scholar
  3. 3.
    S. Jim, T. H. Tiefel, R. C. Sherwood, R. B. Van Dover, M. E. Davis, G. W. Kamlott andR. A. Fastnacht,Phys. Rev. B 37 (1988) 7850.CrossRefGoogle Scholar
  4. 4.
    S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. Van Dover, G. W. Kamlott, R. A. Fastnacht andH. D. Keith,Appl. Phys. Lett. 52 (1988) 2074.CrossRefGoogle Scholar
  5. 5.
    P. J. McGinn, W. Chen andM. A. Black,Physica C 161 (1989) 198.CrossRefGoogle Scholar
  6. 6.
    K. Salama, V. Selvmanickam, L. Gao andK. Sun,Appl. Phys. Lett. 54 (1989) 2352.CrossRefGoogle Scholar
  7. 7.
    M. Murakami, M. Morita andN. Koyama,Jpn. J. Appl. Phys. 28 (1989) L1125.CrossRefGoogle Scholar
  8. 8.
    M. Murakami, M. Morita, K. Doi andM. Miyamoto,ibid. 28 (1989) 1189.CrossRefGoogle Scholar
  9. 9.
    R. J. Pollard, D. G. McCartney, N. McN. Alford andT. Button,Supercond. Sci. Technol. 2 (1989) 169.CrossRefGoogle Scholar
  10. 10.
    T. Aselage andK. Keefer,J. Mater. Res. 3 (1988) 1279.CrossRefGoogle Scholar
  11. 11.
    J. Sestak,Pure and Appl. Chem. 64 (1992) 125.CrossRefGoogle Scholar
  12. 12.
    H. Fredriksson andT. Nylen,Metal Science 16 (1982) 283.CrossRefGoogle Scholar
  13. 13.
    K. N. R. Taylor, P. S. Cook, T. Puzzer, D. N. Matthews, G. J. Russell andP. Goodman,J. Cryst. Growth 88 (1988) 541.CrossRefGoogle Scholar
  14. 14.
    K. N. R. Taylor, P. S. Cook, D. N. Matthews andP. Goodman,Physica C 153–155 (1988) 411.CrossRefGoogle Scholar
  15. 15.
    Th. Wolf, W. Goldacker, B. Obst, G. Roth andR. Flükiger,J. Crystal Growth 96 (1989) 1010.CrossRefGoogle Scholar
  16. 16.
    N. McN. Alford, T. W. Button, C. E. Gough, F. Wellhofer, D. A. O'Connor, M. S. Colclough, R. J. Pollard andD. G. McCartney,J. Appl. Phys. 66 (1989) 5930.CrossRefGoogle Scholar
  17. 17.
    C. Aguillon, D. G. McCartney, P. Reginier, S. Senoussi andG. J. Tatlock,ibid. 69 (1991) 8261.CrossRefGoogle Scholar
  18. 18.
    N. McN. Alford, J. D. Birchall, A. J. Howard, K. Kendall, J. H. Raistrick, European Patent 183453, 1986.Google Scholar
  19. 19.
    P. Fox, E. J. Hardman, J. Ringnalda, X. Yao, C. J. Kiely, D. G. McCartney andG. J. Tatlock in Proceedings of the Second European Conference on Advanced Materials and Processes, edited by T. W. Clyne and P. J. Withers (Institute of Materials, London, 1992) Vol. 3, p. 65.Google Scholar
  20. 20.
    A. Kelly andG. W. Groves, “Crystallography and crystal defects” (Longman, London, 1970) p. 55.Google Scholar
  21. 21.
    J. Ringnalda, PhD thesis, University of Liverpool, UK (1992).Google Scholar
  22. 22.
    J. Ringnalda, X. Yao, D. G. McCartney, C. J. Kiely andG. J. Tatlock,Mater. Lett. 13 (1992) 357.CrossRefGoogle Scholar
  23. 23.
    T. Izumi, Y. Nakamura andY. Shiohara,J. Mater. Res. 7 (1992) 1621.CrossRefGoogle Scholar
  24. 24.
    M. J. Cima, M. C. Flemings, A. M. Figueredo, M. Nakade, H. Ishii, H. D. Brody andJ. S. Haggerty,J. Appl. Phys. 72 (1992) 179.CrossRefGoogle Scholar
  25. 25.
    V. Selvamanickam, C. Partisinevelos, A. V. McGuire andK. Salama,Appl. Phys. Lett. 60 (1992) 3313.CrossRefGoogle Scholar
  26. 26.
    Y. Nakamura, K. Furuya, T. Izumi andY. Shiohara,J. Mater. Res. 9 (1994) 1351.Google Scholar
  27. 27.
    J. Ringnalda, C. J. Kiely, R. J. Pollard andD. G. McCartney in Proceedings of the XIIth International Congress for Electron Microscopy, San Francisco, 1990, edited by D. B. Williams (San Francisco Press, San Francisco, 1990) p. 24.Google Scholar
  28. 28.
    M. Hillert, in “Solidification and casting of metals” (The Metals Society, London, 1979) p. 81.Google Scholar
  29. 29.
    M. N. Rahaman, L. C. de Janghe andM. Y. Chu,J. Amer. Ceram. Soc. 71 (1988) C-237.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • E. J. Hardman
    • 1
  • D. G. McCartney
    • 2
  • X. Yao
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Materials Engineering and Materials DesignUniversity of NottinghamUniversity ParkUK
  3. 3.Division 4, Superconductivity Research LaboratoryInternational Superconductivity Technology CenterTokyoJapan

Personalised recommendations