Skip to main content
Log in

Synthesis of Pb(Mg1/3Nb2/3) O3 perovskite by an alkoxide method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pb(Mg1/3Nb2/3)O3 materials have been synthesized using sol-gel, freeze-drying or spray-pyrolysis techniques. The as-prepared powders were of an amorphous form which could be converted into a crystalline form by calcination. The pyrochlore phase was inevitably formed with an accompanying perovskite phase. As the calcining temperature increased, greater proportions of the desired perovskite phase occurred. The residual pyrochlore phase could be completely transformed into the perovskite phase when the powders were prepared via freeze-drying or by a spray-pyrolysis method. The maximum proportion of the pyrochlore phase was, however, only 92% when the powders were synthesized by a sol-gel route. Thermal gravimetric analysis/differential thermal analysis (TGA/DTA) and infrared transmission spectroscopy (FTIR) indicated that Mg(OEt)2 and Nb(OEt)5 formed a double alkoxide but Pb(OAc)2 formed separate clusters during the hydrolysis of the solution in the sol-gel process. Inhomogeneous mixing meant that the intermediate phase formed was rather difficult to eliminate completely. Homogeneous mixing was preserved when the solution was directly freeze dried or spray pyrolysed. The size of the preferentially formed pyrochlore phase was very fine and further transformation was feasible. Pb(Mg1/3Nb2/3)O3 materials, free of the pyrochlore phase, could therefore be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Swartz, T. R. Shrout, W. A. Schulze andL. E. Cross,Amer. Ceram. Soc. J. 67 (5) (1984) 311–15.

    Google Scholar 

  2. V. A. Bokov andI. E. Myl'nikova.Sov. Phys. Solid State 2 (1961) 2438–32.

    Google Scholar 

  3. G. A. Smolenskii andA. I. Agranovskaya,Sov. Phys. Solid State 1 (1960) 1429–37.

    Google Scholar 

  4. S. L. Jang, K. Uchino, S. Nomura andL. E. Cross,Ferroelectrics 27 (1980) 31–34.

    Google Scholar 

  5. L. E. Cross, S. J. Jang, R. E. Newnham, S. Nomura andK. Uchino,Ferroelectrics 23 (1980) 187–92.

    Google Scholar 

  6. K. Uchino, S. Nomura, L. E. Cross, S. L. Jang andR. E. Newnham,J. Appl. Phys. 51 (1980) 1142–45.

    Google Scholar 

  7. Shoichiro Nomura andKenji Uchino,Ferroelectrics 41 (1982) 117–32.

    Google Scholar 

  8. Dinesh K. Agrawal, R. Roy andH. A. Mckinstry,Mater. Res. Bull. 22 (1987) 83–88.

    Google Scholar 

  9. L. A. Shebanov, P. P. Kapostins andJ. A. Zvirgzds,Ferroelectrics 56 (1984) 53–56.

    Google Scholar 

  10. D. J. Voss, S. L. Swartz andT. R. Shrout,Ferroelectrics 50 (1983) 203–208.

    Google Scholar 

  11. M. Lejeune andJ. P. Boilot,Ferroelectrics 54 (1984) 191–94.

    Google Scholar 

  12. S. L. Swartz andT. R. Shrout,Mater. Res. Bull. 17 (1982) 1245–50.

    Google Scholar 

  13. J. P. Guha andH. U. Anderson,Amer. Ceram. Soc. J. 69 (11) (1986) C287–88.

    Google Scholar 

  14. A. Kato,Indust. Ceram. 7 (2) (1987) 105–8.

    Google Scholar 

  15. D. W. Johnson, Jr,Amer. Ceram. Soc., Bull. 60 (1981) 221–43.

    Google Scholar 

  16. P. A. Lessing,Amer. Ceram. Soc., Bull. 68 (1989) 1002–7.

    Google Scholar 

  17. H. U. Anderson, M. J. Pennell andJ. P. Guha,Advan. Ceram. 21 (1987) 91–98.

    Google Scholar 

  18. T. Fukui, C. Sakurai andM. Okuyama,J. Non-cryst. Solids 134 (1991) 293–295.

    Google Scholar 

  19. P. Ravindranathan, S. Komarneni, A. S. Bhalla, R. Roy andL. E. Cross,Ceram. Trans,1 (1988) 182–9.

    Google Scholar 

  20. P. Ravindranathan, S. Komarneni andR. Roy,Amer. Ceram. Soc., J. 73 (1990) 1024–25.

    Google Scholar 

  21. F. Chaput, J. P. Boilot, M. Lejeune, R. Papiernik, andL. G. Hubert-Pfalzgraf,Amer. Ceram. Soc. J. 72 (1989) 1355–57.

    Google Scholar 

  22. D. C. Bradley, B. N. Chakravarti, andW. Wardlaw,J. Chem. Soc. (1956) 2381–84.

  23. Koichi, Japanese Patent 8 636 107, 20 February (1986).

  24. M. Pechini, US Patent 3 330 697, 11 July (1967).

  25. D. C. Bradley, R. C. Mehrotra andD. P. Gaur, in “Metal alkoxides”, (Academic Press, London, 1978) p. 116.

    Google Scholar 

  26. S. Goel andA. B. Goel andB. C. Mehotra,Syn. React. Inorg. Metal-Org. Chem. 6 (4) (1976) 251–263.

    Google Scholar 

  27. R. Papiernik, L. G. Hubert-Pfalzgraf andMarie-Cecile Massiani,Inorg. Chim. Acta 165 (1989) 1–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, JC., Liu, KS. & Lin, IN. Synthesis of Pb(Mg1/3Nb2/3) O3 perovskite by an alkoxide method. J Mater Sci 30, 3936–3943 (1995). https://doi.org/10.1007/BF01153960

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01153960

Keywords

Navigation