Skip to main content
Log in

‘Free’ postsynaptic-like densities in normal adult brain: their occurrence, distribution, structure and association with subsurface cisterns

  • Published:
Journal of Neurocytology

Summary

Samples of cerebral cortex (parietal and occipital) and thalamic nuclei (ventrobasal, posterolateral, dorsal lateral geniculate) from normal, adult, aldehyde perfusion fixed mice and rats were examined by electron microscopy for the presence of free postsynaptic-like densities (FPSDs). FPSDs are plaques of intracellular paramembranous electron-dense material, ultrastructurally indistinguishable from postsynaptic densities, but not aligned with a presynaptic specialization.

In a systematic survey of the neuropil around 6000 neuronal perikarya, 250 FPSDs were encountered. Almost all of these were within dendritic spines and shafts and about 90% of them were apposed by a neuronal perikaryon, the remainder by a dendritic shaft. Inevery case a subsurface cistern (SSC) was present in the cell body or dendrite apposed to the FPSD, and was flattened along the extent of the FPSD. In none of the material were the FPSDs associated, even remotely, with degenerating elements, suggesting that they are not formed by degeneration of presynaptic boutons. The incidence of FPSD-SSC complexes was higher in thalamus than in cerebral cortex which, together with previous observations indicating their absence from normal cerebellar cortex, suggests significant regional variations in distribution.

It is suggested that FPSDs might represent synaptic precursors perhaps induced to form as a response to loss (possibly age-dependent loss) of synaptic contacts on a neuron and that the SSCs are somehow involved in maintaining the FPSDs and/or preparing them for innervation by adjacent axon terminals to form new synaptic contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, J. &Anderson, W. J. (1972) Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of microneurons with prolonged X-irradiation started at birth.Journal of Comparative Neurology 146, 355–406.

    Google Scholar 

  • Altorfer, J., Fukuda, T. &Hedinger, Ch. (1974) Desmosomes in human seminiferous epithelium. An electron microscopic study.Virchows Archiv B (Cell Pathology) 16, 181–94.

    Google Scholar 

  • Bernstein, L. H. &Wollman, S. H. (1975) Association of mitochondria with desmosomes in the rat thyroid gland.Journal of Ultrastructure Research 53, 83–92.

    Google Scholar 

  • Deane, H. W., Wurzelmann, S. &Kostellow, A. B. (1966) Survey for mitochondrial-desmosome complex in differentiating epithelia.Zeitschrift für Zellforschung 75, 166–77.

    Google Scholar 

  • Garey, L. J. &Powell, T. P. S. (1971) An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey.Proceedings of the Royal Society, B 179, 41–63.

    Google Scholar 

  • Gentschev, T. &Sotelo, C. (1973) Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrastructural study.Brain Research 62, 37–60.

    Google Scholar 

  • Gray, E. G. &Hamlyn, L. H. (1962) Electron microscopy of experimental degeneration in the avian optic tectum.Journal of Anatomy 96, 309–16.

    Google Scholar 

  • Hámori, J. (1973) The inductive role of presynaptic axons in the development of postsynaptic spines.Brain Research 62, 337–44.

    Google Scholar 

  • Hanna, R. B., Hirano, A. &Pappas, G. D. (1976) Membrane specialization of dendritic spines and glia in the weaver mouse cerebellum: a freeze fracture study.Journal of Cell Biology 68, 403–10.

    Google Scholar 

  • Henkart, M., Landis, D. M. D. &Reese, T. S. (1976) Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons.Journal of Cell Biology 70, 338–47.

    Google Scholar 

  • Hirano, A. &Dembitzer, H. M. (1974) Observations on the development of the weaver mouse cerebellum.Journal of Neuropathology and Experimental Neurology 33, 354–64.

    Google Scholar 

  • Hirano, A. &Dembitzer, H. M. (1975) The fine structure of stagger cerebellum.Journal of Neuropathology and Experimental Neurology 34, 1–11.

    Google Scholar 

  • Hirano, A. &Zimmerman, H. M. (1973) Aberrant synaptic development. A review.Archives of Neurology 5, 359–66.

    Google Scholar 

  • Joó, F., Dames, W. &Wolff, J. R. (1979) Effect of prolonged sodium bromide administration on the fine structure of dendrites in the superior cervical ganglion of adult rat.Progress in Brain Research 51, 109–15.

    Google Scholar 

  • Karnovsky, M. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.Journal of Cell Biology 27, 137–8.

    Google Scholar 

  • Kim, S. U. (1975) Formation of unattached spines of Purkinje cell dendrite in organotypic cultures of mouse cerebellum.Brain Research 88, 52–8.

    Google Scholar 

  • Landis, D. M. D. &Reese, T. S. (1977) Structure of the Purkinje cell membrane in staggerer and weaver mutant mice.Journal of Comparative Neurology 171, 247–60.

    Google Scholar 

  • Le Beux, Y. J. (1972) Subsurface cisterns and lamellar bodies: particular forms of endoplasmic reticulum in the neurons.Zeitschrift für Zellforschung und mikroskopische Anatomie 133, 327–52.

    Google Scholar 

  • Lund, R. D. (1969) Synaptic patterns of the superficial layers of the superior colliculus of the rat.Journal of Comparative Neurology 135, 179–208.

    Google Scholar 

  • Lund, J. S. &Lund, R. D. (1970) The termination of callosal fibers in the para visual cortex of the rat.Brain Research 17, 25–45.

    Google Scholar 

  • Malet, P., Perissel, B. &Turchnini, J-P. (1972) Quelques caractères ultrastructuraux des jonctions interhépatocytaires périnatales (souris, rat). Données morphologiques préliminaires.Journal de Microscopie 14, 17–26.

    Google Scholar 

  • Matthews, D. E., Cotman, C. &Lynch, G. (1976) An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. II. Reappearance of morphologically normal synaptic contacts.Brain Research 115, 23–41.

    Google Scholar 

  • May, M. K. &Biscoe, T. J. (1975) An investigation of the foetal rat spinal cord. I. Ultrastructural observations on the onset of synaptogenesis.Cell and Tissue Research 158, 241–9.

    Google Scholar 

  • O'Neal, J. T. &Westrum, L. E. (1973) The fine structural synaptic organization of the cat lateral cuneate nucleus. A study of sequential alterations in degeneration.Brain Research 51, 97–124.

    Google Scholar 

  • Palacios Prü, E. L. &Mendoza Briceño, R. V. (1972) An unusual relationship between gliai cells and neuronal dendrites in olfactory bulbs ofDesmodus rotundus.Brain Research 36, 404–8.

    Google Scholar 

  • Palay, S. L. &Chan-Palay, V. (1974)Cerebellar Cortex. Cytology and Organization. New York: Springer-Verlag.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. De F. (1976)The Fine Structure of the Nervous System: The Neurons and Supporting Cells. Philadelphia: Saunders.

    Google Scholar 

  • Pinching, A. J. (1969) Persistence of post-synaptic membrane thickenings after degeneration of olfactory nerves.Brain Research 16, 277–81.

    Google Scholar 

  • Raisman, G. (1969) Neuronal plasticity in septal nuclei of the adult rat.Brain Research 14, 25–48.

    Google Scholar 

  • Raisman, G., Field, P. M., Ostberg, A. J. C., Iversen, L. L. &Zigmond, R. E. (1974) A quantitative ultrastructural and biochemical analysis of the process of reinnervation of the- superior cervical ganglion in the adult rat.Brain Research 71, 1–16.

    Google Scholar 

  • Rees, R. P. (1978) The morphology of interneuronal synaptogenesis: A review.Federation Proceedings 37, No. 7.

    Google Scholar 

  • Rosenbluth, J. (1962) Subsurface cisterns and their relationships to the neuronal plasma membrane.Journal of Cell Biology 13, 405–21.

    Google Scholar 

  • Rustioni, A. &Sotelo, C. (1974) Some effects of chronic deafferentation on the ultrastructure of the nucleus gracilis of the cat.Brain Research 73, 527–33.

    Google Scholar 

  • Seil, F. J. &Herndon, R. M. (1970) Cerebellar granule cellsin vitro. A light and electron microscope study.Journal of Cell Biology 45, 212–20.

    Google Scholar 

  • Siegesmund, K. A. (1968) The fine structure of subsurface cisterns.Anatomical Record 162, 187–96.

    Google Scholar 

  • Sloper, J. J. (1973) The relationship of subsurface cisternae and cisternal organs to symmetrical axon terminals in the primate sensorimotor cortex.Brain Research 58, 478–83.

    Google Scholar 

  • Sotelo, C. (1968) Permanence of postsynaptic specializations in the frog sympathetic ganglion cells after denervation.Experimental Brain Research 6, 294–305.

    Google Scholar 

  • Sotelo, C. (1973) Permanence and fate of paramembranous synaptic specializations in ‘mutants’ and experimental animals.Brain Research 62, 345–51.

    Google Scholar 

  • Sotelo, C. (1975) Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse.Brain Research 94, 19–44.

    Google Scholar 

  • Špačer, J. &Lieberman, A. R. (1973) Distribution of synaptic types on thalamo-cortical projection neurons of rat ventro-basal thalamus.Journal of Anatomy 117, 212–3.

    Google Scholar 

  • Špačer, J. &Lieberman, A. R. (1974) Ultrastructure and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus.Journal of Anatomy 117, 487–516.

    Google Scholar 

  • Špačer, J., Pařízek, J. &Lieberman, A. R. (1973) Golgi cells, granule cells and synaptic glomeruli in the molecular layer of the rabbit cerebellar cortex.Journal of Neurocytology 2, 407–28.

    Google Scholar 

  • Špačer, J. (1980) Non-synaptic membrane specializations on the necks of Purkinie cell dendritic spines.Journal of Anatomy 131, 732–9.

    Google Scholar 

  • Sternlieb, I. (1968) Mitochondrion-desmosome complexes in human hepatocytes.Zeitschrift für Zellforschung und mikroskopische Anatomie 93, 249–53.

    Google Scholar 

  • Sumner, B. E. H. (1975) A quantitative study of subsurface cisterns and their relationships in normal and axotomized hypoglossal neurons.Experimental Brain Research 22, 175–83.

    Google Scholar 

  • Tandler, B. &Hoppel, Ch. L. (1970) Peroxisome-desmosome complexes in mouse hepatic cells.Zeitschrift für Zellforschung und mikroskopische Anatomie 110, 166–172.

    Google Scholar 

  • Tandler, B. &Hoppel, Ch. L. (1974) Subsurface cisterns in mouse hepatocytes.Anatomical Record 179, 273–84.

    Google Scholar 

  • Watanabe, H. &Burnstock, G. (1976) functional subsurface organs in frog sympathetic ganglion cells.Journal of Neurocytology 5, 125–36.

    Google Scholar 

  • Watson, W. E. (1976)Cell Biology of Brain. London: Chapman and Hall.

    Google Scholar 

  • Westrum, L. E. (1966) Electron microscopy of degeneration in the prepyriform cortex.Journal of Anatomy 100, 683–6.

    Google Scholar 

  • Westrum, L. E. (1969) Electron microscopy of degeneration in the lateral olfactory tract and prepyriform cortex of the rat.Zeitschrift für Zellforschung und mikroskopische Anatomie 98, 157–87.

    Google Scholar 

  • Westrum, L. E. &Black, R. G. (1971) Fine structural aspects of the synaptic organization of the spinal trigeminal nucleus (pars interpolaris) of the cat.Brain Research 25, 265–87.

    Google Scholar 

  • Wolff, J. R., Joó, F., Dames, W. &Fehér, O. (1979) Induction and maintenance of free postsynaptic membrane thickenings in the adult superior cervical ganglion.Journal of Neurocytology 8, 549–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Špaček, J. ‘Free’ postsynaptic-like densities in normal adult brain: their occurrence, distribution, structure and association with subsurface cisterns. J Neurocytol 11, 693–706 (1982). https://doi.org/10.1007/BF01153514

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01153514

Keywords

Navigation