Skip to main content
Log in

Cytology of cobalt-filled neurons in flies: cobalt deposits at presynaptic and postsynaptic sites, mitochondria and the cytoskeleton

  • Published:
Journal of Neurocytology

Summary

Combined light and electron microscopy of identified neurons requires an intracellular marker that is both photon opaque and has electron scattering properties. We describe results using cobalt chloride block intensified with silver as an intracellular label. The novelty of the method is its integration in tissue fixation, prior to dehydration, resulting in fine grain precipitates that resolve certain intracellular structures. Filled neurons are clearly distinguishable from unfilled profiles by cobalt-silver precipitates. Energy dispersive X-ray analysis confirms that silver is specifically deposited onto cobalt sulphide cores which are characteristically associated with microtubules, mitochondria, presynaptic and postsynaptic specializations and gap junction-like membrane appositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, J. S., Shaw, M. K. &Tyrer, N. M. (1979) Visualisation of synapses of physiologically identified cobalt-filled neurones in the locust.Journal of Physiology 296, 2–3P.

    Google Scholar 

  • Altman, J. S. &Tyrer, N. M. (1980) Filling selected neurons with cobalt through cut axons. InNeuroanatomical Techniques. Insect Nervous System (edited byStrausfeld, N. J. &Miller, T. A.), pp. 373–402. New York, Heidelberg, Berlin: Springer Verlag.

    Google Scholar 

  • Bacon, J. P. &Altman, J. S. (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations.Brain Research 138, 359–63.

    Google Scholar 

  • Bacon, J. &Strausfeld, N. J. (1980) Nonrandom resolution of neuron arrangements. InNeuroanatomical Techniques. Insect Nervous System (edited byStrausfeld, N. J. &Miller, T. A.), pp. 357–72. New York, Heidelberg, Berlin: Springer Verlag.

    Google Scholar 

  • Bennett, M. V. L. (1972) Electrical transmission: a functional analysis and comparison to chemical transmission. InHandbook of Physiology, I, The Nervous System (edited byKandel, E. R.), pp. 357–416. Bethesda, Maryland: American Physiological Society.

    Google Scholar 

  • Boschek, C. B. (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the flyMusca domestica.Zeitschrift für Zellforschung und mikroskopische Anatomie 118, 369–409.

    Google Scholar 

  • Brightman, M. W. &Reese, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain.Journal of Cell Biology 40, 648–77.

    Google Scholar 

  • Carafoli, E., Gazzotti, P., Schwerzmann, K. &Niggli, V. (1977) Mitochondrial calcium binding proteins. InCalcium-binding Proteins and Calcium function (edited byWasserman, R. H., Corradino, R. A., Carafoli, E., Kretsinger, R. H., Maclennan, D. H. &Siegel, F. L.), pp. 454–68. Amsterdam: Elsevier North Holland.

    Google Scholar 

  • Carafoli, E. &Rossi, C. S. (1971) Calcium transport in mitochondria.Advances in Cytopharmacology 1, 209–27.

    Google Scholar 

  • Carlin, R. K., Grab, D. J. &Siekevitz, P. (1981) Function of calmodulin in postsynaptic densities. III. Calmodulin binding proteins of the PSD.Journal of Cell Biology 89, 449–55.

    Google Scholar 

  • Erulkar, S. D. &Fine, A. (1979) Calcium in the nervous system.Reviews of Neuroscience 4, 179–232.

    Google Scholar 

  • Gilula, N. B. &Epstein, M. L. (1976) Cell-to-cell communication, gap junctions and calcium. InSymposia of the Society for Experimental Biology XXX: Calcium in Biological Systems (edited byDuncan, C. J.), pp. 257–72. Cambridge: The University Press.

    Google Scholar 

  • Grab, D. J., Carlin, R. K. &Siekewitz, P. (1981) Function of calmodulin in postsynaptic densities. II. Presence of a calmodulin-activatable protein kinase activity.Journal of Cell Biology 89, 440–8.

    Google Scholar 

  • Hackett, J. T. (1976) Selective antagonism of frog cerebellar synaptic transmission by manganese and cobalt ions.Brain Research 114, 47–52.

    Google Scholar 

  • Hausen, K. &Wolburg-Buchholz, K. (1980) An improved cobalt sulfide-silver intensification method for electron microscopy.Brain Research 187, 462–6.

    Google Scholar 

  • Hausen, K., Wolburg-Buchholz, K. &Ribi, W. A. (1980) The synaptic organisation of visual interneurons in the lobula complex of flies. A light and electron microscopical study using silver-intensified cobalt-impregnations.Cell and Tissue Research 208, 371–87.

    Google Scholar 

  • Kita, H. &Van Der Kloot, W. (1973) Action of Co and Ni at the frog neuromuscular junction.Nature New Biology 245, 52–3.

    Google Scholar 

  • Lane, N. J. (1978) Intercellular junctions and cell contacts in vertebrates. InProceedings of the Ninth International Congress of Electron Microscopy Vol. III (edited bySturgess, J. M.), pp. 673–91. Toronto: Microscopical Society of Canada.

    Google Scholar 

  • Lane, N. J., Skaer, H. Le B. &Swales, L. S. (1977) Intercellular junctions in the central nervous system of insects.Journal of Cell Science 26, 175–99.

    Google Scholar 

  • Llinas, R., Steinberg, I. Z. &Walton, K. (1976) Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate.Proceedings of the National Academy of Sciences USA 73, 2918.

    Google Scholar 

  • Obermayer, M. &Strausfeld, N. J. (1980) Silver-staining cobalt sulfide deposits within neurons of intact ganglia. InNeuroanatomical Techniques. Insect Nervous System (edited byStrausfeld, N. J. &Miller, T. A.), pp. 403–27. New York, Heidelberg, Berlin: Springer Verlag.

    Google Scholar 

  • Osborne, M. P. (1975) The ultrastructure of nerve-muscle synapses. InInsect Muscle (edited byUsherwood, P. N. R.), pp. 151–205. New York: Academic Press.

    Google Scholar 

  • Peachey, L. D. (1964) Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules.Journal of Cell Biology 20, 95–108.

    Google Scholar 

  • Peracchia, C. (1980) Structural correlates of gap junction permeation.International Review of Cytology 66, 81–146.

    Google Scholar 

  • Pfenninger, K. H. (1971) The cytochemistry of synaptic densities. I. An analysis of the bismuth iodide impregnation method.Journal of Ultrastructure Research 34, 103–22.

    Google Scholar 

  • Phillips, C. E. (1980) Intracellularly injected cobaltous ions accumulate at synaptic densities.Science 207, 1477–9.

    Google Scholar 

  • Pitman, R. M., Tweedle, C. D. &Cohen, M. J. (1972) Branching of central neurons: Intracellular cobalt injection for light and electron microscopy.Science 176, 412–4.

    Google Scholar 

  • Pitman, R. M., Tweedle, C. D. &Cohen, M. J. (1973) The form of nerve cells: determination by cobalt impregnation. InIntracellular Staining in Neurobiology (edited byKater, S. B. &Nicholson, C.), pp. 83–97. Berlin, New York: Springer Verlag.

    Google Scholar 

  • Politoff, A., Pappas, G. D. &Bennett, M. V. L. (1972) Cobalt: A tracer for light and electron microscopy that can cross an electrotonic synapse.Journal of Cell Biology 55, 204a.

    Google Scholar 

  • Politoff, A., Pappas, G. D. &Bennett, M. V. L. (1974) Cobalt ions cross an electrotonic synapse if cytoplasmic concentration is low.Brain Research 76, 343–6.

    Google Scholar 

  • Rademakers.,L. H. P. M. (1977) Identification of a secretomotor centre in the brain ofLocusta migratoria, controlling the secretory activity of the adipokinetic hormone producing cells of the corpus cardiacum.Cell and Tissue Research 184, 381–95.

    Google Scholar 

  • Ribi, W. A. (1983) Electron microscopy of Golgi-impregnated neurons. InFunctional Neuroanatomy. Springer Series in Experimental Entomology (edited byStrausfeld, N. J.) Heidelberg, Berlin, New York: Springer Verlag. In press.

    Google Scholar 

  • Schürmann, F.-W. (1980) Methods for special staining of synaptic sites. InNeuroanatomical Techniques. Insect Nervous System (edited byStrausfeld, N. J. &Miller, T. A.), pp. 241–61. New York, Heidelberg, Berlin: Springer Verlag.

    Google Scholar 

  • Strausfeld, N. J. &Bassemir, U. K. (1983) Cobalt-coupled neurons of a giant fibre system in Diptera.Journal of Neurocytology 12, 971–91.

    Google Scholar 

  • Strausfeld, N. J. &Obermayer, M. (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and central nervous systems.Journal of Comparative Physiology 110, 1–12.

    Google Scholar 

  • Székely, G. &Kosaras, B. (1976) Dendro-dendritic contact between frog motoneurons shown with the cobalt labelling technique.Brain Research 108, 194–8.

    Google Scholar 

  • Székely, G. &Kosaras, B. (1977) Electron microscopic identification of postsynaptic dorsal root terminals: a possible substrate of dorsal root potentials in the frog spinal cord.Experimental Brain Research 29, 531–93.

    Google Scholar 

  • Timm, F. (1958) Zur Histochemie des Ammonshorngebietes.Zeitschrift für Zellforschung und mikroskopische Anatomie 48, 548–55.

    Google Scholar 

  • Tyrer, N. M. &Bell, E. M. (1974) The intensification of cobalt-filled neurone profiles using a modification of Timm's sulphide-silver method.Brain Research 73, 151–5.

    Google Scholar 

  • Tyrer, N. M., Shaw, M. K. &Altman, J. S. (1980) Intensification of cobalt-filled neurons in sections (light and electron microscopy). InNeuroanatomical Techniques. Insect Nervous System (edited byStrausfeld, N. J. &Miller, T. A.), pp. 426–46. New York, Heidelberg, Berlin: Springer Verlag.

    Google Scholar 

  • Venable, J. H. &Coggeshall, R. (1965) A simplified lead citrate stain for use in electron microscopy.Journal of Cell Biology 25, 407–8.

    Google Scholar 

  • Weakly, J. N. (1973) The action of cobalt ions on neuromuscular transmission in the frog.Journal of Physiology 234, 597–612.

    Google Scholar 

  • Wood, J. G., Wallace, R., Whitaker, J. &Cheung, W. Y. (1980) Immunocytochemical localization of calmodulin and a heat labile calmodulin-binding protein (C-M-BP80) in basal ganglia from mouse brain.Journal of Cell Biology 84, 66–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassemir, U.K., Strausfeld, N.J. Cytology of cobalt-filled neurons in flies: cobalt deposits at presynaptic and postsynaptic sites, mitochondria and the cytoskeleton. J Neurocytol 12, 949–970 (1983). https://doi.org/10.1007/BF01153344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01153344

Keywords

Navigation