Skip to main content
Log in

Ganglioside localization on myelinated nerve fibres by cholera toxin binding

  • Published:
Journal of Neurocytology

Summary

GM1 ganglioside has been localized on the surfaces of myelinated, peripheral nerve fibres by using immunofluorescence to detect cholera toxin receptors. Unfixed, mouse sciatic nerves were teased into individual, intact fibres in order to expose their extracellular surfaces. Cholera toxin binding sites were abundant at all nodes of Ranvier; they were scarce on the internodal fibre surfaces. The nodal receptors were resistant to various degradative enzymes, including trypsin and proteinase K. Proteases did not unmask receptors on the internodal surfaces. Exogenous GM1 successfully competed for the toxin binding sites on the fibres. From this evidence and the specificity of cholera toxin binding, we conclude that GM1 ganglioside is abundantly present on the membrane surfaces of peripheral nodes of Ranvier and is not present on the internodal Schwann cell surfaces in an appreciable amount. The patterns of fluorescence within the node suggest that the axon and Schwann cell structures are sites where GM1 is localized.

Treatment of the teased fibres withVibrio cholerae neuraminidase, which is known to reduce polysialogangliosides to the monosialoganglioside Gm1, induced cholera toxin binding on the internodal Schwann cell surfaces. The induced receptors, as well as their precursors, were resistant to trypsin and proteinase K. We conclude that the internodal Schwann cell surface is rich in an unidentified polysialoganglioside(s) that can be converted to GM1 by neuraminidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begenisich, T. (1975) Magnitude and location of surface charges onMyxicola giant axons.Journal of General Physiology 66, 47–65.

    Google Scholar 

  • Behr, J.-P. &Lehn, J.-M. (1973) The binding of divalent cations by purified gangliosides.FEBS Letters 31, 297–300.

    Google Scholar 

  • Berthold, C.-H. (1978) Morphology of normal peripheral axons. InPhysiology and Pathobiology of Axons (edited byWaxman, S. G.), pp. 3–63. New York: Raven Press.

    Google Scholar 

  • Brady, R. O. &Quarles, R. H. (1973) The enzymology of myelination.Molecular and Cellular Biochemistry 2, 23–9.

    Google Scholar 

  • Brockes, J. P., Fields, K. L. &Raff, M. C. (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve.Brain Research 165, 105–18.

    Google Scholar 

  • Chou, K. H., Nolan, C. E. &Jungalwala, F. B. (1982) Composition and metabolism of gangliosides in rat peripheral nervous system during development.Journal of Neurochemistry 39, 1547–58.

    Google Scholar 

  • Corfield, A. P., Michalski, J.-C. &Schauer, R. (1981) The substrate specificity of sialidases from microorganisms and mammals. InPerspectives in Inherited Metabolic Diseases Vol. 4 (edited byTettamanti, G., Durand, P. &Di Donato, S.), pp. 3–70. Milano: Edi. Ermes.

    Google Scholar 

  • Critchley, D. R. (1974) Cell surface proteins of NIL1 hamster fibroblasts labelled by a galactose oxidase, tritiated borohydride method.Cell 3, 121–5.

    Google Scholar 

  • Cuatrecasas, P. (1973) Interaction ofVibrio cholerae enterotoxin with cell membranes.Biochemistry 12, 3547–58.

    Google Scholar 

  • Devries, G. H. &Zmachinski, C. J. (1980) The lipid composition of rat C.N.S. axolemma-enriched fractions.Journal of Neurochemistry 34, 424–30.

    Google Scholar 

  • Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D. &Lang, H. (1974) Proteinase K fromTritirachium album Limber.European Journal of Biochemistry 47, 91–7.

    Google Scholar 

  • Elul, R. (1967) Fixed charge in the cell membrane.Journal of Physiology 189, 351–65.

    Google Scholar 

  • Engel, E. L., Wood, J. G. &Byrd, F. I. (1979) Ganglioside patterns and cholera toxin-peroxidase labeling of aggregating cells from the chick optic tectum.Journal of Neurobiology 10, 429–40.

    Google Scholar 

  • Felgner, P., Thompson, T. E., Beach, J., Barenholz, Y. &Wong, M. (1982) High affinity calcium binding to ganglioside in phospholipid bilayers.Biophysical Journal 37, 209a.

    Google Scholar 

  • Fields, K. L., Brockes, J. P., Mirsky, R. &Wendon, L. M. B. (1978) Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture.Cell 14, 43–51.

    Google Scholar 

  • Finkelstein, R. A., Fujita, K. &Lospalluto, J. J. (1971) Procholeragenoid: an aggregated intermediate in the formation of choleragenoid.Journal of Immunology 107, 1043–51.

    Google Scholar 

  • Finkelstein, R. A. &Lospalluto, J. J. (1970) Production, purification, and assay of cholera toxin.Journal of Infectious Diseases 121 (suppl.), S63-S72.

    Google Scholar 

  • Fishman, P. H. (1982) Role of membrane gangliosides in the binding and action of bacterial toxins.Journal of Membrane Biology 69, 85–97.

    Google Scholar 

  • Fishman, P. H. &Brady, R. O. (1976) Biosynthesis and function of gangliosides. Gangliosides appear to participate in the transmission of membrane-mediated information.Science 194, 906–15.

    Google Scholar 

  • Fishman, P. H., Pacuszka, T., Hom, B. &Moss, J. (1980) Modification of ganglioside GM1. Effect of lipid moiety on choleragen action.Journal of Biological Chemistry 255, 7657–64.

    Google Scholar 

  • Frankenhaeuser, B., Ryan, K. J. &Arhem, P. (1976) The effects of neuraminidase and protamine chloride on potential clamp parameters of the node of Ranvier (Xenopus laevis).Acta physiologica scandinavica 96, 548–57.

    Google Scholar 

  • Gold, A. M. (1967) Sulfonylation with sulfonyl halides. InMethods in Enzymology: Enzyme Structure Vol. XI (edited byHirs, C. H. W.), pp. 706–11. New York: Academic Press.

    Google Scholar 

  • Greene, D. A., Winegrad, A. I., Carpentier, J.-L., Brown, M. J., Fukuma, M. &Orci, L. (1979) Rabbit sciatic nerve fascicle and ‘endoneurial’ preparations forin vitro studies of peripheral nerve glucose metabolism.Journal of Neurochemistry 33, 1007–18.

    Google Scholar 

  • Gregson, N. A., Kennedy, M. &Leibowitz, S. (1977) Gangliosides as surface antigens on cells isolated from the rat cerebellar cortex.Nature 266, 461–3.

    Google Scholar 

  • Hakomori, S. -I. (1969) Differential reactivities of fetal and adult human erythrocytes to antisera directed against glycolipids of human erythrocytes.Vox Sanguinis 16, 478–85.

    Google Scholar 

  • Hakomori, S. -I. (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis.Annual Review of Biochemistry 50, 733–64.

    Google Scholar 

  • Hakomori, S. -I., Teather, C. &Andrews, H. (1968) Organizational difference of cell surface ‘hematoside’ in normal and virally transformed cells.Biochemical and Biophysical Research Communications 33, 563–8.

    Google Scholar 

  • Hansson, H. -A., Holmgren, J. &Svennerholm, L. (1977) Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin.Proceedings of the National Academy of Sciences USA 74, 3782–6.

    Google Scholar 

  • Hilbig, R., Rösner, H. &Rahmann, H. (1981) Phylogenetic recapitulation of brain ganglioside composition during ontogenetic development.Comparative Biochemistry and Physiology 68B, 301–5.

    Google Scholar 

  • Hille, B., Woodhull, A. M. &Shapiro, B. I. (1975) Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.Philosophical Transactions of the Royal Society of London 270, 301–18.

    Google Scholar 

  • Holmgren, J., Elwing, H., Fredman, P. &Svennerholm, L. (1980) Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus-toxin receptor.European Journal of Biochemistry 106, 371–9.

    Google Scholar 

  • Irwin, L. N. &Irwin, C. C. (1979) Developmental changes in ganglioside composition of hippocampus, retina, and optic tectum.Developmental Neuroscience 2, 129–38.

    Google Scholar 

  • Iwamori, M. &Nagai, Y. (1981) Comparative study on ganglioside compositions of various rabbit tissues. Tissue-specificity in ganglioside molecular species of rabbit thymus.Biochimica et Biophysica Acta 665, 214–20.

    Google Scholar 

  • Kasarskis, E. J., Karpiak, S. E., Rapport, M. M., Yu, R. K. &Bass, N. H. (1981) Abnormal maturation of cerebral cortex and behavioral deficit in adult rats after neonatal administration of antibodies to ganglioside.Developmental Brain Research 1, 25–35.

    Google Scholar 

  • Kleinebeckel, D. (1982) Acceleration of muscle re-innervation in rats by ganglioside treatment: an electromyographic study.European Journal of Pharmacology 80, 243–5.

    Google Scholar 

  • Langley, O. K. (1979) Histochemistry of polyanions in peripheral nerve. InComplex Carbohydrates of Nervous Tissue (edited byMargolis, R. U. &Margolis, R. K.), pp. 193–207. New York: Plenum Press.

    Google Scholar 

  • Ledeen, R. W. (1979) Structure and distribution of gangliosides. InComplex Carbohydrates of Nervous Tissue (edited byMargolis, R. U. &Margolis, R. K.), pp. 1–23. New York: Plenum Press.

    Google Scholar 

  • Mackenzie, C. G. Mackenzie, J. B. &Beck, P. (1961) The effect of pH on growth, protein synthesis, and lipid-rich particles of cultured mammalian cells.Journal of Biophysical and Biochemical Cytology 9, 141–56.

    Google Scholar 

  • Mandel, P., Dreyfus, H., Yusufi, A. N. K., Sarlieve, L., Robert, J., Neskovic, N., Harth, S. &Rebel, G. (1980) Neuronal and glial cell cultures, a tool for investigation of ganglioside function. InStructure and Function of Gangliosides (edited bySvennerholm, L.), pp. 515–31. New York: Plenum Press.

    Google Scholar 

  • Manuelidis, L. &Manuelidis, E. E. (1976) Ultrastructural study of plasma membrane GM1 in neuroectodermal cells using cholera-peroxidase.Journal of Neurocytology 5, 575–89.

    Google Scholar 

  • Marchase, R. B. (1977) Biochemical investigations of retinotectal adhesive specificity.Journal of Cell Biology 75, 237–57.

    Google Scholar 

  • Meyer, K. (1971) Hyaluronidases. InThe Enzymes Vol. V (edited byBoyer, P. D.), pp. 307–20. New York: Academic Press.

    Google Scholar 

  • Miller-Podraza, H., Bradley, R. M. &Fishman, P. H. (1982) Biosynthesis and localization of gangliosides in cultured cells.Biochemistry 21, 3260–5.

    Google Scholar 

  • Mithen, F. A., Agrawal, H. C., Eylar, E. H., Fishman, M. A., Blank, W. &Bunge, R. P. (1982a) Studies with antisera against peripheral nervous system myelin and myelin basic proteins. I. Effects of antiserum upon living cultures of nervous tissue.Brain Research 250, 321–31.

    Google Scholar 

  • Mithen, F. A., Agrawal, H. C., Fishman, M. A., Eylar, E. H. &Bunge, R. P. (1982b) Studies with antisera against peripheral nervous system myelin and myelin basic proteins. II. Immunohistochemical studies in cultures of rat dorsal root ganglion neurons and Schwann cells.Brain Research 250, 333–43.

    Google Scholar 

  • Nagai, Y., Sakakibara, K. &Uchida, T. (1980) Immunomodulatory roles of gangliosides in EAE and EAN. InSearch for the Cause of Multiple Sclerosis and Other Chronic Diseases of Central Nervous System (edited byBoese, A.), pp. 127–38. Weinheim: Verlag Chemie.

    Google Scholar 

  • Obata, K., Oide, M. &Handa, S. (1977) Effects of glycolipids onin vitro development of neuromuscular junction.Nature 266, 369–71.

    Google Scholar 

  • Okada, E., Maeda, T. &Watanabe, T. (1982) Immunocytochemical study on cholera toxin binding sites by monoclonal anti-cholera toxin antibody in neuronal tissue culture.Brain Research 242, 233–41.

    Google Scholar 

  • Peterkofsky, B. (1982) Bacterial collagenase. InMethods in Enzymology: Structural and Contractile Proteins (Part A):Extracellular Matrix Vol. 82 (edited byCunningham, L. W. &Frederiksen, D. W.), pp. 453–71. New York: Academic Press.

    Google Scholar 

  • Phillips, D. D., Hibbs, R. G., Ellison, J. P. &Shapiro, H. (1972) An electron microscopic study of central and peripheral nodes of Ranvier.Journal of Anatomy 111, 229–38.

    Google Scholar 

  • Probst, W., Rösner, H., Wiegandt, H. &Rahmann, H. (1979) Das komplexationsvermögen von gangliosiden für Ca2+, I. Einfluss mono- und divalenter kationen sowie von acetylcholin.Hoppe-Seyler's Zeitschrift für Physiologische Chemie 360, 979–86.

    Google Scholar 

  • Raff, M. C., Fields, K. L., Hakomori, S.-I., Mirsky, R., Pruss, R. M. &Winter, J. (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture.Brain Research 174, 283–308.

    Google Scholar 

  • Raff, M., Hornby-Smith, A. &Brockes, J. P. (1978) Cyclic AMP as a mitogenic signal for cultured rat Schwann cells.Nature 273, 672–3.

    Google Scholar 

  • Raine, C. S. (1982) Differences between the nodes of Ranvier of large and small diameter fibres in the P.N.S.Journal of Neurocytology 11, 935–47.

    Google Scholar 

  • Rapport, M. M. &Gorio, A. (eds) (1981)Gangliosides in Neurological and Neuromuscular Function, Development, and Repair. New York: Raven Press.

    Google Scholar 

  • Schauer, R., Veh, R. W., Sander, M., Corfield, A. P. &Wiegandt, H. (1980) ‘Neuraminidase-resistant’ sialic acid residues of gangliosides. InStructure and Function of Gangliosides (edited bySvennerholm, L., Mandel, P., Dreyfus, H. &Urban, P.-F.), pp. 283–94. New York: Plenum Press.

    Google Scholar 

  • Shellswell, G. B., Restall, D. J., Duance, V. C. &Bailey, A. J. (1979) Identification and differential distribution of collagen types in the central and peripheral nervous systems.FEBS Letters 106, 305–8.

    Google Scholar 

  • Sherbet, G. V., Lakshmi, M. S. &Rao, K. V. (1972) Characterisation of ionogenic groups and estimation of the net negative electric charge on the surface of cells using natural pH gradients.Experimental Cell Research 70, 113–23.

    Google Scholar 

  • Svennerholm, L. (1963) Chromatographic separation of human brain gangliosides.Journal of Neurochemistry 10, 613–23.

    Google Scholar 

  • Svennerholm, L. (1980) Gangliosides and synaptic transmission. InStructure and Function of Gangliosides (edited bySvennerholm, L., Mandel, P., Dreyfus, H. &Urban, P. -F.), pp. 533–44. New York: Plenum Press.

    Google Scholar 

  • Tomich, J. M., Mather, I. H. &Keenan, T. W. (1976) Proteins mask gangliosides in milk fat globule and erythrocyte membranes.Biochimica et Biophysica Acte 433, 357–64.

    Google Scholar 

  • Tosteson, M. T., Tosteson, D. C. &Rubnitz, J. (1980) Cholera toxin interactions with lipid bilayers.Acta physiologica scandinavica (suppl.), 21–5.

  • Venerando, B., Cestaro, B., Fiorilli, A., Ghidoni, R., Preti, A. &Tettamanti, G. (1982) Kinetics ofVibrio cholerae sialidase action on gangliosidic substrates at different supramolecular-organizational levels.Biochemical Journal 203, 735–42.

    Google Scholar 

  • Wiegandt, H. (1982) The gangliosides. InAdvances in Neurochemistry Vol. 4 (edited byAgranoff, B. W. &Aprison, M. H.), pp. 149–231. New York: Plenum Press.

    Google Scholar 

  • Wiemken, V. &Bachofen, R. (1982) Probing the topology of proteins in the chromatophore membrane ofRhodospirillum rubrum G-9 with proteinase K.Biochimica et Biophysica Acta 681, 72–6.

    Google Scholar 

  • Willinger, M. &Schachner, M. (1980) GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum.Developmental Biology 74, 101–17.

    Google Scholar 

  • Yu, R. C.-P. &Bunge, R. P. (1975) Damage and repair of the peripheral myelin sheath and node of Ranvier after treatment with trypsin.Journal of Cell Biology 64, 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganser, A.L., Kirschner, D.A. & Willinger, M. Ganglioside localization on myelinated nerve fibres by cholera toxin binding. J Neurocytol 12, 921–938 (1983). https://doi.org/10.1007/BF01153342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01153342

Keywords

Navigation