Skip to main content
Log in

Fracture tests in Mode I on fibre-reinforced plastics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The characterization of crack growth (Mode I) in glass fibre-reinforced materials is difficult because neither the crack length nor the crack tip can be assessed with sufficient accuracy because of delamination and bridging of broken and unbroken fibres. Hence linear elastic fracture mechanics cannot be employed. A new testing technique is reported, to characterize the crack growth in Mode I under quasistatic loading conditions in terms of fracture mechanics. The tests and evaluation procedures are based on the fracture energy concept, which does not require knowledge of the exact crack length. Experiments were performed at room temperature and 77 K, on a two-dimensionally glass fibre-reinforced epoxy (ISOVAL 10). The splitting test method proposed in the present work is experimentally simple; the loading device and the sample geometry are small and well suited for measurements at low temperatures on both unirradiated or irradiated samples. Results of acoustic emission and fractographic examinations, as well as investigations on the specimen-size dependence of the measured fracture mechanical quantities, are presented. Advantages and disadvantages of the new technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lau, H. H. Abdelmohsen andM. K. Abdelsalam,Adv. Cryog. Engng 34 (1988) 83.

    Google Scholar 

  2. S. M. Lee,J. Compos. Mater. 20 (1986) 185.

    Google Scholar 

  3. S. Hashemi, A. J. Kinloch andJ. G. Williams,Compos. Sci. Tech. 37 (1990) 429.

    Google Scholar 

  4. Idem, Proc. R. Soc. Lond. A 427 (1990) 173.

    Google Scholar 

  5. A. C. Garg,Engng Fract. Mech. 23 (1986) 719.

    Google Scholar 

  6. A. C. Garg andO. Ishai,ibid. 22 (1985) 413.

    Google Scholar 

  7. Idem, ibid. 22 (1985) 595.

    Google Scholar 

  8. Y. Kagawa, E. Nakata andS. Yoshida, ASTM STP 864 (American Society for Testing and Materials, Philadelphia, PA, 1985) p. 27.

    Google Scholar 

  9. A. Daimaru, T. Hata andM. Taya,ibid. p. 505.

    Google Scholar 

  10. S. M. Jeng, J. M. Yang andC. J. Yang,Mater. Sci. Engng A 138 (1991) 181.

    Google Scholar 

  11. C. G. Aronsson andJ. Bäcklund,J. Compos. Mater. 20 (1986) 287.

    Google Scholar 

  12. Idem, ASTM STP 907 (American Society for Testing and Materials, Philadelphia, PA, 1986) p. 134.

    Google Scholar 

  13. A. Hillerborg, in Proceedings of “Fracture Mechanics of Concrete, Developments in Civil Engineering”, Vol. 7 edited by F. Wittmann (Elsevier, Amsterdam, 1983) p. 223.

    Google Scholar 

  14. Idem, Mater. Construct. 18 (1985) 25.

    Google Scholar 

  15. P. E. Roelfstra, Thesis, Ecole Polytechnique Federale de Lausane (1989).

  16. B. Hillemeier, Thesis, University of Karlsruhe (1976).

  17. E. K. Tschegg, Aust. Pat. 233/86, 390 328 (1986).

  18. Idem, Mater. Test.33 (1991) 338.

    Google Scholar 

  19. E. K. Tschegg, K. Humer andH. W. Weber,Adv. Cryog. Engng 38A (1992) 355.

    Google Scholar 

  20. H. N. Linsbauer andE. K. Tschegg: Final report A1, COST 502, No. HNL-01-89 (1989).

  21. E. K. Tschegg,ASTM J. Test. Eval. (1991) submitted.

  22. E. K. Tschegg, K. Humer andH. W. Weber,Cryogenics 31 (1991) 312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschegg, E.K., Humer, K. & Weber, H.W. Fracture tests in Mode I on fibre-reinforced plastics. J Mater Sci 28, 2471–2480 (1993). https://doi.org/10.1007/BF01151682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151682

Keywords

Navigation