Skip to main content
Log in

Role of hydrostatic stress in hydrogen diffusion in pearlitic steel

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The relevant role of hydrostatic stress in hydrogen diffusion in pearlitic steel is outlined from both theoretical and experimental points of view. The theoretical development offers the formulation of hydrogen diffusion equations where hydrogen flux density depends not only on the concentration gradient, but also on the hydrostatic stress distribution in the sample. The experimental programme consisted of slow strain-rate tests on axisymmetric notched samples at different strain rates under simultaneous hydrogen charging by cathodic polarization. The use of different notch geometries allows a study of the influence on hydrogen diffusion of the hydrostatic stress state in the vicinity of the notch tip. A specific microscopic mode of fracture different from classical cleavage was found, associated with hydrogen effects: the tearing topography surface. In the quasi-instantaneous tests, the value of hydrostatic stress at the sample boundary (just the notch tip) at the failure instant is relevant from the fracture point of view. In the quasi-static tests, the tearing topography surface depth equals that of the maximum hydrostatic stress point, and the maximum value of the stress triaxiality in each geometry (ratio of the hydrostatic to the equivalent stress, almost constant during the tests) seems to govern the diffusion process. These facts emphasize the relevant role of hydrostatic stress in the vicinity of the notch in hydrogen diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Parkins, M. Elices, V. Sanchez-Galvez andL. Caballero,Corros. Sci. 22 (1982) 379.

    Google Scholar 

  2. J. P. Hirth,Metall. Trans. 11A (1980) 861.

    Google Scholar 

  3. H. H. Johnson, J. G. Morlet andA. R. Troiano,Trans. Met. Soc. AIME 212 (1958) 528.

    Google Scholar 

  4. A. R. Troiano,Trans. ASM 52 (1960) 54.

    Google Scholar 

  5. W. W. Gerberich, Y. T. Chen andC. St. John,Metall. Trans. 6A (1975) 1485.

    Google Scholar 

  6. W. W. Gerberich, T. Livne, X. F. Chen andM. Kaczorowski,ibid. 19A (1988) 1319.

    Google Scholar 

  7. H. P. Van Leeuwen,Engng Fract. Mech. 9 (1977) 291.

    Google Scholar 

  8. Idem, ibid. 6 (1974) 141.

    Google Scholar 

  9. M. A. Astiz, in “Computational Methods for Non Linear Problems”, edited by C. Taylor, D. R. J. Owen and E. Hinton (Pineridge Press, Swansea, 1987) p. 271.

    Google Scholar 

  10. C. Hwang andI. M. Bernstein,Acta Metall. 34 (1986) 1001.

    Google Scholar 

  11. Idem, ibid. 34 (1986) 1011.

    Google Scholar 

  12. J. K. Tien, A. W. Thompson, I. M. Bernstein andR. J. Richards,Metall. Trans. 7A (1976) 821.

    Google Scholar 

  13. H. H. Johnson andJ. P. Hirth,ibid. 7A (1976) 1543.

    Google Scholar 

  14. S. V. Nair, R. R. Jensen andJ. K. Tien,ibid. 14A (1983) 385.

    Google Scholar 

  15. A. J. West andM. R. Louthan Jr,ibid. 10A (1979) 1675.

    Google Scholar 

  16. Idem, ibid. 13A (1982) 2049.

    Google Scholar 

  17. T. Zakroczymski,Corrosion 41 (1985) 485.

    Google Scholar 

  18. M. Hashimoto andR. M. Latanision,Metall. Trans. 19A (1988) 2789.

    Google Scholar 

  19. J. P. Hirth andB. Carnahan,Acta Metall. 26 (1978) 1795.

    Google Scholar 

  20. F. R. Brotzen andA. Seeger,ibid. 37 (1989) 2985.

    Google Scholar 

  21. S. Ochiai, S. Yoshinaga andY. Kikuta,Trans. ISIJ 15 (1975) 503.

    Google Scholar 

  22. Y. Kikuta, S. Ochiai andT. Kangawa, in “Proceedings of the 2nd International Congress on Hydrogen in Metals”, Paris 1977, Paper 3F1.

  23. R. A. Oriani,Acta Metall. 18 (1970) 147.

    Google Scholar 

  24. J. O'M. Bockris andP. K. Subramanyan,J. Electrochem. Soc. 118 (1971) 1114.

    Google Scholar 

  25. G. M. Pressouyre andI. M. Bernstein,Metall. Trans. 9A (1978) 1571.

    Google Scholar 

  26. G. M. Pressouyre,ibid. 10A (1979) 1571.

    Google Scholar 

  27. G. M. Pressouyre andI. M. Bernstein,Acta Metall. 27 (1979) 89.

    Google Scholar 

  28. G. M. Pressouyre,ibid. 28 (1980) 895.

    Google Scholar 

  29. G. M. Pressouyre andI. M. Bernstein,Metall. Trans. 12A (1981) 835.

    Google Scholar 

  30. M. Iino,Acta Metall. 30 (1982) 367.

    Google Scholar 

  31. Idem, ibid. 30 (1982) 377.

    Google Scholar 

  32. Idem, Metall Trans. 16A (1985) 401.

    Google Scholar 

  33. B. G. Pound,Corrosion 45 (1989) 18.

    Google Scholar 

  34. J. Toribio, PhD thesis, Polytechnical University of Madrid (1987).

  35. J. Toribio andM. Elices, in “Proceedings of CORROSION/88 — Corrosion Research Symposium”, St Louis, MO, March 1988 (NACE, 1988) p. 88.

  36. V. Sanchez-Galvez, L. Caballero andM. Elices, ASTM STP866, edited by G. Haynes and R. Baboian (American Society for Testing and Materials, Philadelphia, PA, 1985) p. 428.

    Google Scholar 

  37. G. Burnell, D. Hardie andR. N. Parkins,Br. Corros. J. 22 (1987) 229.

    Google Scholar 

  38. C. D. Kim andB. E. Wilde, ASTM STP665, edited by G. M. Ugiansky and J. H. Payer (American Society for Testing and Materials, Philadelphia, PA, 1979) p. 97.

    Google Scholar 

  39. B. R. W. Hinton andR. P. M. Procter,Corros. Sci. 23 (1983) 101.

    Google Scholar 

  40. M. Hashimoto andR. M. Latanision,Metall. Trans. 19A (1988) 2799.

    Google Scholar 

  41. Y. J. Park andI. M. Bernstein, in “Proceedings of the 4th International Conference on Fracture — ICF4”, Waterloo 1977, edited by D. M. R. Taplin (University of Waterloo Press, Waterloo, 1977) p. 33.

    Google Scholar 

  42. Idem, Metall. Trans. 10A (1979) 1653.

    Google Scholar 

  43. J. J. Lewandowski andA. W. Thompson,ibid. 17A (1986) 461.

    Google Scholar 

  44. Idem, ibid, in “Advances in Fracture Research — ICF6”, edited by S. R. Valluri, D. M. R. Taplin, P. Rama Rao, J. F. Knott and R. Dubey (Pergamon Press, Oxford, 1984) p. 1515.

    Google Scholar 

  45. Idem, Metall. Trans. 17A (1986) 1769.

    Google Scholar 

  46. Idem, Acta Metall. 35 (1987) 1453.

    Google Scholar 

  47. M. Dollar, I. M. Bernstein andA. W. Thompson,ibid. 36 (1988) 311.

    Google Scholar 

  48. K. Nakase andI. M. Bernstein,Metall. Trans. 19A (1988) 2819.

    Google Scholar 

  49. D. J. Alexander andI. M. Bernstein,ibid. 20A (1989) 2321.

    Google Scholar 

  50. A. Fontaine andS. Jeunehomme, in “Failure Analysis. Theory and Practice — ECF7”, edited by E. Czoboly (Engineering Materials Advisory Services Ltd, West Midlands, 1988) p. 1267.

    Google Scholar 

  51. A. Fontaine andS. Jeunehomme, in “Advances in Fracture Research — ICF7”, edited by K. Salama, K. RaviChandar, D. M. R. Taplin and P. Rama Rao (Pergamon Press, Oxford, 1989) p. 3865.

    Google Scholar 

  52. J. J. Lewandowski andA. W. Thompson, in “Fracture Control of Engineering Structures — ECF6”, edited by H. C. van Elst and A. Bakker (Engineering Materials Advisory Services Ltd, West Midlands, 1986) p. 1985.

    Google Scholar 

  53. A. W. Thompson andJ. C. Chesnutt,Metall. Trans. 10A (1979) 1193.

    Google Scholar 

  54. J. E. Costa andA. W. Thompson,ibid. 13A (1982) 1315.

    Google Scholar 

  55. J. Toribio, A. M. Lancha andM. Elices,Mater. Sci. Engng,A145 (1991) 167.

    Google Scholar 

  56. P. W. Keefe, S. V. Nair andJ. K. Tien,Metall. Trans 115A (1984) 1865.

    Google Scholar 

  57. S. V. Nair andJ. K. Tien,ibid. 16A (1985) 2333.

    Google Scholar 

  58. A. M. Lancha, PhD thesis, Complutense University of Madrid (1987).

  59. A. M. Lancha andM. Elices, in “Proceedings of corrosion/88 — Corrosion Research Symposium”, St Louis, MO, March 1988 (NACE, 1988) p. 95.

  60. Idem, in “Failure Analysis. Theory and Practice — ECF7”, edited by E. Czoboly (Engineering Materials Advisory Services Ltd, West Midlands, 1988) p. 961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toribio, J. Role of hydrostatic stress in hydrogen diffusion in pearlitic steel. J Mater Sci 28, 2289–2298 (1993). https://doi.org/10.1007/BF01151655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151655

Keywords

Navigation