Skip to main content
Log in

High-temperature sulfidation of Fe-Mn-Cr alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Alloys of composition (in weight percent) Fe-10Mn-10Cr, Fe-10Mn-25Cr, and Fe-25Mn-10Cr were reacted at temperatures of 973 and 1073 K with flowing hydrogen-hydrogen sulfide mixtures corresponding to equilibrium sulfur partial pressures of 10−3 and 8 Pa. Sulfide-scale-growth kinetics and morphologies were compared with those found on pure iron and on the binary alloys Fe-25Cr and Fe-25Mn. All alloys reacted according to parabolic kinetics after an initial period of slow approach to this steady state. Of the materials examined, the binary Fe-25Mn showed the slowest sulfidation rates, except at 973 K and a sulfur pressure of 8 Pa, where Fe-10Mn-25Cr had the best performance. Ternary alloys provided improved performance only when a scale layer of Cr3S4 was formed, an event dependent on temperature and sulfur activity. Multilayered scales were always formed on the ternary alloys, and the role of these layers in controlling sulfidation rates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Young,Rev. High Temp. Mater. 4, 299 (1980).

    Google Scholar 

  2. F. J. Bruns,Corrosion 17, 227 (1961).

    Google Scholar 

  3. F. J. Bruns,Corrosion 25, 119 (1969).

    Google Scholar 

  4. E. B. Backensto, R. D. Drew, and C. C. Stapleford,Corrosion 12, 6t (1956).

    Google Scholar 

  5. L. I. Staffanson,Met. Trans. B 7B, 131 (1976).

    Google Scholar 

  6. S. Mrowec and K. Przybylski,High Temp. Mater. Proc. 6, 1 (1984).

    Google Scholar 

  7. K. Nishida, T. Narita, T. Tani, and G. Sasaki,Oxid. Met. 14, 65 (1980).

    Google Scholar 

  8. K. Nishida and T. Narita,Proc. 8th Int. Cong. Met. Corros. 1, 821 (1981).

    Google Scholar 

  9. S. Mrowec, T. Walec, and T. Werber,Oxid. Met. 1, 93 (1969).

    Google Scholar 

  10. T. Narita and K. Nishida,Oxid. Met. 6, 157 (1973).

    Google Scholar 

  11. T. Narita, W. W. Smeltzer, and K. Nishida,Oxid. Met. 17, 299 (1982).

    Google Scholar 

  12. T. Narita and W. W. Smeltzer,Oxid. Met. 21, 39 (1984);21, 57 (1984).

    Google Scholar 

  13. P. Papaiacovou, H. J. Grabke, and P. Schmidt,Werkst. Korros. 36, 320 (1985).

    Google Scholar 

  14. D. de B. Darwent and R. Roberts,Proc. Roy. Soc., London Ser A. 216, 344 (1953

    Google Scholar 

  15. J. P. Orchard and D. J. Young,J. Electrochem. Soc. 133, 1734 (1986).

    Google Scholar 

  16. T. Rosenqvist,J. Iron Steel Inst. 174, 37–59 (1954).

    Google Scholar 

  17. K. T. Jacob, D. B. Rao, and H. G. Nelson,Oxid. Met. 13, 25–55 (1979).

    Google Scholar 

  18. D. J. Young, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 120, 1221–1224 (1973).

    Google Scholar 

  19. H. Rau,J. Less Common Met. 55, 205–211 (1977).

    Google Scholar 

  20. O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry, 5th Ed. (Perg Oxford, 1979), p. 381.

  21. F. A. Elrefaie and W. W. Smeltzer,Oxid. Met. 16, 267–275 (1981).

    Google Scholar 

  22. R. Kiessling and C. Westman,J. Iron Steel Inst. 377–379 (1966).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southwell, G., Young, D.J. High-temperature sulfidation of Fe-Mn-Cr alloys. Oxid Met 36, 409–421 (1991). https://doi.org/10.1007/BF01151589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151589

Key Words

Navigation