Skip to main content
Log in

Effect of block copolymer dopants and alkylsilane monolayers on the fracture toughness of polystyrene-glass interfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The asymmetric double cantilever beam fracture test has been used to study the fracture toughness of polystyrene (PS)-glass interfaces reinforced with poly(deuterostyrene-b-2 vinyl pyridine) (dPS-PVP) as a function of degree of polymerization of the blocks. The effect of modifying the glass substrate with various selfassembled monolayers is also described. For the block copolymer with degrees of polymerization,N dPS=656 andN PVP=46 (referred to asN dPSN PVP or 656-46), located at the interface between glass and PS, the interface fails by chain scission at areal chain densities, Σ, of the block copolymer below a critical value, Σ*. Above this value, e.g. Σ > Σ*, the interface fails by crazing followed by chain scission. For the 656-46 diblock copolymer, the transition is located at Σ*=0.03 chains nm−2, which results in a calculated force to break a C-C bond along the polymer backbone of approximately 2 × 10−9N. For the 800–870 diblock copolymer at the interface between glass and PS, failure occurs due to chain scission. Fracture of both the 656-46 and the 800–870 block copolymers at the interface between (OTS) octadecyltrichlorosilane monolayer coated glass and PS is due to chain pulloff of the block copolymer from the OTS coated glass. Very little additional stress was transferred across the interface, resulting in fracture toughnesses comparable to that of a PS-glass interface with no block copolymer added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Doolittle, T. B. Horton andH. P. Blom,Automotive Eng. 92 (1984) 48.

    Google Scholar 

  2. D. P. Seraphim, R. C. Lasky andC. -Y. Li, “Principles of Electronic Packaging” (McGraw-Hill, New York, 1989) p. 16.

    Google Scholar 

  3. R. L. Opila, F. J. Boerio andA. W. Czanderna (eds),Polymer/Inorganic Interfaces, MRS Proceedings 304 (1993).

  4. C. Creton, E. J. Kramer, C. Y. Hui andH. R. Brown,Macromol. 25 (1992) 3075.

    Google Scholar 

  5. H. R. Brown,ibid. 22 (1989) 2859.

    Google Scholar 

  6. J. Washiyama, C. Creton andE. J. Kramer,ibid. 25 (1992) 4751.

    Google Scholar 

  7. J. Washiyama, E. J. Kramer andC. Y. Hui,ibid. 26 (1993) 2928.

    Google Scholar 

  8. V. Janarthanan, R. S. Stein andP. D. Garrett,ibid. 27 (1994) 4855.

    Google Scholar 

  9. J. W. Smith, E. J. Kramer andP. Mills,J. Polym. Sci., Polym. Phys. B32 (1994) 1731.

    Google Scholar 

  10. J. W. Smith, E. J. Kramer, F. Xiao, C. Y. Hui, W. Reichert andH. R. Brown,J. Mater. Sci. 28 (1993) 4234.

    Google Scholar 

  11. A. Ulman, “An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly” (Academic Press, San Diego, CA, 1991) p. 237.

    Google Scholar 

  12. K. R. Shull, E. J. Kramer, G. Hadziioannou andW. Tang,Macromol. 23 (1990) 4780.

    Google Scholar 

  13. A. F. Dunne, E. J. Kramer andJ. W. Smith, Unpublished results.

  14. F. Xiao, C. Y. Hui andE. J. Kramer,J. Mater. Sci. 28 (1993) 5620.

    Google Scholar 

  15. S. R. Wasserman, Y. -T. Tao andG. M. Whitesides,Langmuir 5 (1989) 1074.

    Google Scholar 

  16. A. Ulman,Adv. Mater. 2 (1990) 573.

    Google Scholar 

  17. C. Creton, E. J. Kramer andG. Hadziioannou,Macromol. 24 (1991) 3075.

    Google Scholar 

  18. M. F. Kanninen,Int. J. Fracture 9 (1973) 83.

    Google Scholar 

  19. F. Xiao, C. Y. Hui andE. J. Kramer,J. Mater. Sci. 28 (1993) 5620.

    Google Scholar 

  20. K. R. Shull, in “Physics of Polymer Surfaces and Interfaces”, edited by I. Sanchez (Butterworth, Boston, MA, 1992) p. 203.

    Google Scholar 

  21. L. C. Feldman andJ. W. Mayer, “Fundamentals of Surface and Thin Film Analysis” (North-Holland, New York, 1986) p. 18.

    Google Scholar 

  22. M. F. Ashby andD. R. H. Jones, “Engineering Materials 2” (Pergamon Press, Oxford, 1986) p. 148.

    Google Scholar 

  23. J. Washiyama, E. J. Kramer, C. Creton andC. Y. Hui,Macromol. 27 (1994) 2019.

    Google Scholar 

  24. M. Calistri-Yeh, E. J. Kramer, K. R. Shull andR. Sharma, In preparation.

  25. J. Washiyama, E. J. Kramer, C. Creton andC. Y. Hui,Macromol. 27 (1994) 2019.

    Google Scholar 

  26. L. J. Norton, V. Smigolova, M. U. Pralle, A. Hubenko, K. H. Dai, E. J. Kramer, S. Hahn, C. Berglund andB. Dekoven,ibid. 28 (1995) 1999.

    Google Scholar 

  27. M. Calistri-Yeh, E. J. Kramer andR. Sharma,J. Polym. Sci., Polym Phys. submitted.

  28. J. C. Bolger andA. S. Michaels, in “Interface Conversion for Polymer Coatings”, edited byP. Weiss and C. D. Cheever (Elsevier New York, 1968).

    Google Scholar 

  29. C. Creton, PhD thesis, Cornell University, Ithaca, NY (1992).

    Google Scholar 

  30. S. Onogi, T. Masuda andK. Kitagawa,Macromol. 2 (1970) 109.

    Google Scholar 

  31. M. Calistri-Yeh, E. J. Kramer, R. Sharma, W. Zhao, M. H. Rafailovich, J. Sokolov andJ. D. Brock,Langmuir, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calistri-Yeh, M., Park, E.J., Kramer, E.J. et al. Effect of block copolymer dopants and alkylsilane monolayers on the fracture toughness of polystyrene-glass interfaces. J Mater Sci 30, 5953–5959 (1995). https://doi.org/10.1007/BF01151511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151511

Keywords

Navigation