Skip to main content
Log in

Near threshold delayed hydride crack growth in zirconium alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Delayed hydride cracking (DHC) in zirconium alloys arises as a consequence of the diffusion of hydrogen atoms to a crack tip, precipitation of hydride platelets and then the fracture of a hydrided region that has formed ahead of the crack tip. This process repeats itself and, consequently, a crack grows in a series of steps. There is a threshold value,K IH, of the crack tip stress intensity below which DHC crack growth is unable to proceed. The present paper provides a physical picture of the near threshold situation, accounting systematically for the manner in which hydrided material fractures, and consequently obtains an expression forK IH in terms of the hydrided material's flow and fracture characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hardie andW. M. Shanahan,J. Nuc. Mater. 55 (1975) 1.

    Google Scholar 

  2. L. A. Simpson, in “Mechanical behaviour of materials”, edited by K. J. Miller and R. A. Smith, Vol. 2 (ICM 3, Cambridge, 1979) p, 445.

    Google Scholar 

  3. E. Smith,Int. J. Pressure Vessels & Piping 61 (1995) 1.

    Google Scholar 

  4. S. Q. Shi andM. P. Puls,J. Nuc. Mater. 208 (1994) 232.

    Google Scholar 

  5. J. R. Rice andM. A. Johnson, in “Inelastic behaviour of solids”, edited by M. F. Kanninen, W. Fadler, A. R. Rosenfeld and R. I. Jaffee, (McGraw-Hill, New York, 1970) p. 641.

    Google Scholar 

  6. R. M. McMeeking,J. Mech. Phys. Solids 25 (1977) 357.

    Google Scholar 

  7. R. L. Eadie, D. Mok, D. Scarth andM. Leger,Scripta Metall. Mater. 25 (1991) 497.

    Google Scholar 

  8. M. P. Puls, L. A. Simpson andR. Dutton, in “Fracture problems and solutions in the energy industry”, edited by L. A. Simpson (Pergamon Press, Oxford, 1982) p. 13.

    Google Scholar 

  9. E. Smith,J. Mater. Sci. 29 (1994) 1121.

    Google Scholar 

  10. Idem, Int. Jnl. Fracture, accepted.

  11. A. H. Cottrell, in “Fracture”, Proceedings of the First Tewksbury Symposium, edited by C. J. Osborn (University of Melbourne, Australia, 1963) p. 1.

    Google Scholar 

  12. R. L. Eadie andR. R. Smith,Can. Metall. Quart. 27 (1988) 213.

    Google Scholar 

  13. M. P. Puls,Met. Trans. A 19 (1988) 1507.

    Google Scholar 

  14. K. Nuttall andA. J. Rogowski,J. Nuc. Mater. 80 (1979) 279.

    Google Scholar 

  15. N. R. Moody andW. W. Gerberich,Met. Trans. A 11 (1980) 973.

    Google Scholar 

  16. Idem, ibid. 13 (1982) 1055.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E. Near threshold delayed hydride crack growth in zirconium alloys. J Mater Sci 30, 5910–5914 (1995). https://doi.org/10.1007/BF01151504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151504

Keywords

Navigation