Skip to main content
Log in

Volumes and heat capacities of anionic-nonionic surfactant mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Density, heat capacity and surface tension measurements of sodium decylsulfate (NaDeS)-dodecyldimethylamine oxide (DDAO)-water mixtures were carried out as functions of the surfactants total molality mt at fixed stoichiometric mixture compositions XNaDeS. From the surface tension data, the critical micelle concentration of NaDeS-DDAO mixtures as a function of XNaDeS were obtained. From density and heat capacity data, the apparent molar volume VΦ,2 and heat capacity CΦ,2 of NaDeS-DDAO mixtures in water were calculated, respectively. At a given mole fraction, VΦ,2 and CΦ,2 monotonically increases and decreases, respectively, with increasing mt. However, anomalies were observed at XNaDeS=0.1 and 0.3 for both VΦ,2 and CΦ,2 vs. mt curves. The nonideal contributions to the thermodynamic properties for the formation of surfactant-surfactant mixed micelles in water by mixing aqueous solutions of pure NaDeS and DDAO micelles were calculated at 0.3 mol-kg−1 for the micellized surfactants mixture. The excess volume Vexc and heat capacity as functions of XNaDeS are concave and S-shaped curves, respectively. All the properties are compared to those for sodium dodecylsulfate-DDAO mixture. In addition, to clarify the effect of the change in the hydrophobicity of the surfactants mixtures Vexc for the dodecyltrimethylammonium bromide-decyltrimethylammonium bromide mixture were calculated from literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Rubingh, inSolution Chemistry of Surfactants, K. L. Mittal ed. (Plenum, New York, 1979) and references therein.

    Google Scholar 

  2. J. F. Scamehorn,Phenomena in Mixed Surfactant Systems (ACS Symposium Series 311, 1986).

  3. M. Chorro and N. Kamenka,J. Chim. Phys. 88, 515 (1991).

    Google Scholar 

  4. H. Asano, K. Aki, and M. Ueno,Colloid Polym. Sci. 267, 935 (1989).

    Google Scholar 

  5. E. Caponetti, D. Chillura Martino, M. A. Floriano, and R. Triolo,Langmuir 9, 1193 (1993).

    Google Scholar 

  6. N. Funasaki and S. Hada,J. Phys. Chem. 86, 2504 (1982).

    Google Scholar 

  7. M. Yamanaka and S. Kaneshina,J. Solution Chem. 19, 729 (1990).

    Google Scholar 

  8. M. Yamanaka and S. Kaneshina,J. Solution Chem. 20, 1159 (1991).

    Google Scholar 

  9. M. S. Bakshi, R. Crisantino, R. De Lisi, and S. Milioto,J. Phys. Chem. 97, 6914 (1993).

    Google Scholar 

  10. R. Crisantino, R. De Lisi, and S. Milioto,J. Solution Chem. 23, 639 (1994).

    Google Scholar 

  11. R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).

    Google Scholar 

  12. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  13. J. E. Garrod and T. M. Herrington,J. Phys. Chem. 74, 363 (1970).

    Google Scholar 

  14. M. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  15. S. Kaneshina, M. Tanaka, and T. Tomida,J. Colloid Interface Sci. 48, 450 (1974).

    Google Scholar 

  16. J. Clint,J. Chem. Soc. 71, 1327 (1975).

    Google Scholar 

  17. C. Davidson, PhD thesis, Aberdeen University, 1983.

  18. R. De Lisi, C. Ostiguy, G. Perron, and J. E. Desnoyers,J. Colloid Interface Sci. 71, 147 (1979).

    Google Scholar 

  19. G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Colloid Interface Sci. 48, 494 (1974).

    Google Scholar 

  20. J. G. Weers, J. F. Rathman, and D. R. Scheuing,Colloid Polym. Sci. 268, 832 (1990).

    Google Scholar 

  21. H. Uchiyama, M. Abe, and K. Ogino,J. Colloid Interface Sci. 138, 69 (1990).

    Google Scholar 

  22. C. M. Nguyen, J. F. Rathman, and J. F. Scamehorn,J. Colloid Interface Sci. 112, 438 (1986).

    Google Scholar 

  23. K. Motomura, M. Yamanaka, and M. Aratono,Colloid Polym. Sci. 262, 948 (1984).

    Google Scholar 

  24. D. G. Hall, P. Meares, C. Davidson, E. Wyn-Jones, and J. Taylor, inMixed Surfactant Systems, P. Holland and D. Rubingh, eds. (ACS Symposium Series 501, 1992) Chapt. VII.

  25. E. Wilhelm, J.-P. E. Grolier, and M. H. Karbalai Gassemi,Ber. Bunsenges. Phys. Chem. 81, 925 (1977).

    Google Scholar 

  26. E. Wilhelm, A. Faradjzadeh, and J.-P. E. Grolier,J. Chem. Thermodynamics 11, 979 (1979).

    Google Scholar 

  27. J. F. Rathman and J. F. Scamehorn,J. Phys. Chem. 88, 5807 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milioto, S., Crisantino, R., De Lisi, R. et al. Volumes and heat capacities of anionic-nonionic surfactant mixtures. J Solution Chem 24, 369–384 (1995). https://doi.org/10.1007/BF01150875

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150875

Key Words

Navigation