Skip to main content
Log in

Weight functions for cracks in finite rectangular plates

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A numerical method for the determination of weight functions relevant to cracked bodies with finite dimensions is presented. The discretized nodal weight function is determined by means of the finite element method, and the assumed form of the crack-face weight function is successfully demonstrated by using the least squares fitting procedure. The explicit weight functions of mode I are presented for plates of finite width and length with single edge, double edge and center cracks. With the use of the uncracked stress field in the crack faces and the crack-face weight function, the efficient calculation of the stress intensity factor is illustrated. The size of the Dugdale plastic zone ahead of the crack tip for a finite plate is estimated from the available weight functions. Some practical examples for various crack configurations and loading systems are given and a very satisfactory degree of accuracy is obtained from the results when compared with the findings of earlier studies.

Résumé

On présente une méthode numérique pour la détermination des fonctions pondérales relatives à des corps fissurés de dimensions finies. Au moyen de la méthode des éléments finis, on détermine la fonction correspondant à une discrétisation nodale, et la forme supposée de la fonction relative à la surface de la fissure se trouve confirmée grâce à une procédure de positionnement par moindres carrés. On présente les fonctions pondérales explicites de Mode 1 pour des tôles de largeur et longueur finies, comportant des fissures sur un seul bord, sur deux bords ou au centre. En appliquant aux faces de la fissure le champ de constraintes en condition non fissurée et la fonction pondérale relative à ces faces, on montre comment calculer efficacement le facteur d'intensité de contrainte. Les fonctions disponibles permettent d'estimer la taille de la zone plastique de Dugdale en avant de la fissure dans le cas d'une tôle de grandeur finie. On fournit quelques exemples pratiques correspondant à diverses configurations de fissures et de modes de sollicitation. Quand on compare les résultats obtenus à ceux résultant d'autres approches, on est frappé par le degré de précision auquel la méthode permet d'accéder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

crack length

E :

Young's modulus

v :

Poisson's ratio the prospective crack plane

K (1) :

stress intensity factor for load system (1)

K (2) :

stress intensity factor for load system (2)

T (2) (s, a):

surface traction on the boundary

s :

arc length of the boundary

u(1) (s, a):

displacement field on the tractionS 1

h (s, a) :

weight function on the traction boundaryS 1

x :

distance from the crack mouth

T (2) y (x, a):

stresses in the crack faces normal to the prospective crack plane

u (1) y (x, a):

crack opening displacement

h (x, a) :

weight function on the crack faces

σ :

remote stress

σ y :

yield stress

c :

Dugdale plastic zone size

W :

width of plate

L :

length of plate boundary

References

  1. H.F. Bueckner,ZAMM 50 (1970) 529–546.

    Google Scholar 

  2. J.R. Rice,International Journal of Solids and Structures 8 (1972) 751–758.

    Google Scholar 

  3. H.F. Bueckner,ZAMM 51 (1971) 97–109.

    Google Scholar 

  4. H.J. Petroski and J.D. Achenbach,Engineering Fracture Mechanics 10 (1978) 257–266.

    Google Scholar 

  5. X. Niu and G. Glinka,Engineering Fracture Mechanics 26 (1987) 701–706.

    Google Scholar 

  6. G.T. Sha,Engineering Fracture Mechanics 19 (1984) 685–699.

    Google Scholar 

  7. G.T. Sha and C.T. Yang,Engineering Fracture Mechanics 21 (1985) 1119–1149.

    Google Scholar 

  8. D.M. Parks,International Journal of Fracture 10 (1974) 487–501.

    Google Scholar 

  9. T.K. Hellen,International Journal of Numerical Methods in Engineering 9 (1975) 187–207.

    Google Scholar 

  10. G.C. Sih,Handbook of Stress Intensity Factors, Institute of Fracture and Solid Mechanics, Lehigh University (1973).

  11. D.P. Rooke and D.J. Cartwright,Compendium of Stress Intensity Factors, Her Majesty's Stationery Office, London (1976).

    Google Scholar 

  12. D.S. Dugdale,Journal of the Mechanics and Physics of Solids 8 (1960) 100–108.

    Google Scholar 

  13. H. Tada, P.C. Paris and G.R. Irwin,The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Penna. (1973).

    Google Scholar 

  14. H.J. Petroski,International Journal of Fracture 15 (1979) 217–230.

    Google Scholar 

  15. X. Niu and G. Glinka,International Journal of Fracture 35 (1987) 3–20.

    Google Scholar 

  16. D.J. Hayes and J.G. Williams,International Journal of Fracture 8 (1972) 239–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CH., Ma, CC. Weight functions for cracks in finite rectangular plates. Int J Fract 40, 43–63 (1989). https://doi.org/10.1007/BF01150865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150865

Keywords

Navigation