Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. D. N. Vidman, “Determination of the strength of parts from the type of fatigue fractures,” Vestn. Mashinostr., Nos. 2–4, 39–44 (1942).

    Google Scholar 

  2. I. A. Oding, Structural Features of the Fatigue of Metals as a Means Establishment of the Reasons for Machine Failures [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1949).

    Google Scholar 

  3. Ya. B. Fridman, T. A. Gordeeva, and A. M. Zaitsev, The Structure and Analysis of the Fractures of Metals [in Russian], Mashgiz, Moscow (1960).

    Google Scholar 

  4. V. S. Ivanova, L. I. Maslov, and L. R. Botvina, “Fractographic features and the fracture toughness of steel in cyclic loading,” Probl. Prochn., No. 2, 37–41 (1972).

    Google Scholar 

  5. T. A. Gordeeva and I. P. Zhegina, The Analysis of Fractures in Evaluation of the Reliability of Materials [in Russian], Mashniostroenie, Moscow (1979).

    Google Scholar 

  6. P. J. E. Forsyth, “Some observations and measurements on mixed fatigue-tensile-crack growth in aluminum alloys,” Scr. Met.,10, No. 5, 383–386 (1976).

    Google Scholar 

  7. L. R. Botvina, L. V. Limar', and B. S. Logovikov, “Evaluation of the parameters of jumplike fatigue crack growth in compressor blades of VT3-1 titanium alloy,” Fiz.-Khim. Mekh. Mater., No. 1, 71–74 (1981).

    Google Scholar 

  8. O. N. Romaniv, E. A. Shur, A. N. Tkach, et al., “The kinetics and mechanism of fatigue crack growth in iron,” ibid., No. 2, 57–66 (1981).

    Google Scholar 

  9. M. Habashi, M. Azou, P. Gregoire, et al., “Morphologie des cassures par fatigue dans les aciers inoxydables,” Metaux,52, No. 609, 167–184 (1976).

    Google Scholar 

  10. V. A. Stepanenko and A. Ya. Krasovskii, “Microstructural features of the fatigue failure of low-carbon steel,” Probl. Prochn., No. 7, 52–54 (1974).

    Google Scholar 

  11. N. A. J. Blades, W. J. Plumbridge, and D. Sidey, “High-temperature fatigue crack propagation in aluminum alloy RR58,” Mater. Sci. Eng.,6, No. 2, 195–207 (1976).

    Google Scholar 

  12. L. R. Hall and R. C. Chah, “On plane strain cyclic flaw growth rates,” Eng. Fract. Mech.,3, No. 2, 169–189 (1971).

    Google Scholar 

  13. T. Kawasaki, T. Yokobori, S. Nakanishi, et al., “Fractographical study on fatigue crack crack propagation in a structural carbon steel by scanning electron microscope,” Repts. Res. Inst. Strength and Fract. Mater., Tohoku Univ.,6, No. 1, 25–47 (1970).

    Google Scholar 

  14. T. Ekobori, Scientific Fundamentals of the Strength and Fracture of Materials [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  15. A. C. Pickard, R. O. Ritchie, and J. F. Knott, “Fatigue crack propagation in a type 316 stainless steel weldment,” Met. Technol.,2, No. 6, 235–263 (1975).

    Google Scholar 

  16. A. Ya. Krasovskii, O. P. Ostash, V. A. Stepanenko, and S. Ya. Yarema, “The influence of low temperatures on the rate and microfractographic features of fatigue crack development in low-carbon steel,” Probl. Prochn., No. 4, 74–78 (1977).

    Google Scholar 

  17. C. M. Carman and M. F. Schuler, “Some fractographic features of fatigue crack growth in maraging steel,” J. Iron Steel Inst.,208, No. 5, 463–468 (1970).

    Google Scholar 

  18. Ya. Pokluda and P. Stanek, “A quantitative analysis of the fatigue failure process on the basis of a study of the fracture surface morphology,” Probl. Prochn., No. 4, 13–20 1981).

    Google Scholar 

  19. K. Kobayasi and Ya. Tanaka, J. Iron Steel Inst. Jpn.,64, No. 4, 404 (1978).

    Google Scholar 

  20. G. A. Miller, “Fatigue fracture appearance and the kinetics of striation formation in some high-strength steels,” Trans. Q. ASM, No. 3, 651–658 (1969).

    Google Scholar 

  21. C. Masuda, A. Ohta, S. Nishijiama, and E. Sasaki, “Fatigue striation in a wide range of crack propagation rates up to 70 m/cycle in a ductile structural steel,” J. Mater. Sci.,15, No. 7, 1663 (1980).

    Google Scholar 

  22. T. Uchimoto, A. Sakamoto, and S. Nagata, “Quantitative evaluation of electron-fractography of fatigue surface,” Trans. Iron Steel Inst. Jpn.,17, No. 1, 1–10 (1977).

    Google Scholar 

  23. R. C. Bates and W. G. Clark, “Fractography and fracture mechanics,” Trans. Q. ASM,62, No. 2, 380–389 (1969).

    Google Scholar 

  24. K. J. H. Wanhill, “Fractography of fatigue crack propagation in 2024-T3 and 7075-T6 aluminum alloys in air and vacuum,” Met. Trans.,6A, No. 8, 1587–1596 (1975).

    Google Scholar 

  25. L. R. Botvina, V. N. Shabalina, I. P. Zhegina, and Yu. M. Stoida, “The microrelief of fatigue fractures of aluminum alloy specimens in high-frequency loading,” Fiz.-Khim. Mekh. Mater., No. 5, 41–43 (1980).

    Google Scholar 

  26. R. J. H. Wanhill, “A fractographic analysis of environmental fatigue crack propagation in Ti-6Al-4V sheet,” Corrosion,32, No. 5, 163–172 (1976).

    Google Scholar 

  27. A. Yuen, S. W. Hopkins, G. R. Leverant, and C. A. Rau, “Correlations between fracture surface appearance and fracture mechanics parameters for stage II fatigue crack propagation in Ti-6Al-4V”, Met. Trans.,5, No. 8, 1833–1842 (1974).

    Google Scholar 

  28. N. R. Moody and W. W. Gerberich, “Influence of frequency and microstructure on fatigue crack growth in Ti-6Al-2Sn,” Met. Sci.,14, No. 3, 95–100 (1980).

    Google Scholar 

  29. L. R. Botvina, S. Ya. Yarema, V. V. Grechko, and L. V. Limar', “The kinetics of fatigue failure of VT3-1 titanium alloy,” Fiz.-Khim. Mekh. Mater., No. 6, 39–45 (1981).

    Google Scholar 

  30. N. M. Grinberg, I. L. Ostapenko, and E. N. Alekseenko, “The fractography of fatigue failure of silicon iron in a wide range of amplitudes of deformation in air and in vacuum,” Probl. Prochn., No. 7, 33–38 (1979).

    Google Scholar 

  31. N. M. Grinberg, A. M. Gavrilyako, N. L. D'yakonenko, et al., “Fatigue crack growth and the plastic zone in air and in vacuum,” ibid., No. 4, 20–25 (1981).

    Google Scholar 

  32. G. T. Hahn, R. G. Hoagland, and A. R. Rosenfield, “Local yielding affecting fatigue crack growth,” Met. Trans.,3, No. 5, 1189–1202 (1972).

    Google Scholar 

  33. W. J. Mills and L. A. James, “The fatigue crack propagation response of two nickel-base alloys in a liquid sodium environment,” Trans. ASME, J. Eng. Mater. Technol.,101, No.3, 205–213 (1979).

    Google Scholar 

  34. R. Koterazava, M. Mori, T. Mattsui, and D. Simo, “A fractographic investigation of fatigue crack propagation,” Tr. Am. Obshch. Inzh.-Mekh., Teor. Osn. Inzh. Rasch., Ser. D,97, No. 4, 7017 (1975).

    Google Scholar 

  35. R. M. Pelloux and M. Faral, “Assessment of crack tip closure in an aluminum alloy by electron fractography,” Fatigue Eng. Mater. Struct.,1, No. 1, 21–35 (1979).

    Google Scholar 

  36. C. Bathias and R. M. Pelloux, “Fatigue crack propagation in martensitic and austenitic steels,” Met. Trans.,4, 1265–1273 (1973).

    Google Scholar 

  37. T. Yokobori and K. Sato, “The effect of frequency on fatigue crack propagation rate and striation spacing in 2024-T3 aluminum alloy and SM-50 steel,” Eng, Fract. Mech.,8, No. 1, 81–88 (1976).

    Google Scholar 

  38. T. Ohmura, R. M. Pelloux, and N. J. Grant, “High-temperature fatigue crack growth in a coblat base superalloy,” Eng. Mech.,5, No. 4, 909–922 (1973).

    Google Scholar 

  39. F. A. Heiser and R. W. Hertzberg, “Anisotropy of fatigue crack propagation,” Trans. ASME. J. Bas. Eng.,93, 211–217 (1971).

    Google Scholar 

  40. R. W. Hertzberg and P. C. Paris, “Application of electron fractography and fracture mechanics to fatigue crack propagation,” in: Proc. of the 1st Int. Conf. on Fracture, Vol. 1, 459–478 (1966).

    Google Scholar 

  41. J. Kershaw and H. W. Liu, “Electron fractography and fatigue crack propagation in 7075- T6 aluminum sheet,” Int. J. Fract. Mech.,7, 269–276 (1971).

    Google Scholar 

  42. R. M. Pelloux, “Fractographic analysis of the influence of constituent particles on fatigue crack propagation in aluminum alloys,” Trans. ASM.57, No. 2 511–519 (1964).

    Google Scholar 

  43. R. C. Bates, W. G. Clark, and D. M. Moon, “Correlation of fractographic features with fracture mechanics data,” in: Electron Microfractography, ASTM, Philadelphia, Pa. (1969), pp. 192–214 (1969).

    Google Scholar 

  44. M. Parry, H. Nordberg, and R. W. Hertzberg, “Fatigue crack propagation in A514 base plate and welded joints,” Weld. J. Res. Suppl.,51, 485–490 (1972).

    Google Scholar 

  45. W. J. Mills and L. A. James, “Effect of temperature on the fatigue crack propagation behavior of Inconel X-750,” Fatigue Eng. Mater. Struct.,3, No. 2, 159–175 (1980).

    Google Scholar 

  46. D. Rhodes, J. C. Radon, and L. E. Culver, “Analysis of combined static and fatigue growth data,” Fatigue Eng. Mater. Struct.,4, No. 1, 49–63 (1981).

    Google Scholar 

  47. A. McMinn, “Fractographic analysis in the understanding of corrosion fatigue mechanisms,” Fatigue Eng. Mater. Struct.,4, No. 3, 235–251 (1981).

    Google Scholar 

  48. N. J. Mills and N. Walker, “Fatigue crack initiation in glassy plastics in high-strain fatigue tests,” J. Mater. Sci.,15, No. 7, 1832–1840 (1980).

    Google Scholar 

  49. M. E. Mackey, T. G. Teng, and J. M. Schultz, “Craze roles in the fatigueof polycarbonate,” J. Mater. Sci.,14, 221–227 (1979).

    Google Scholar 

  50. V. S. Ivanova, L. R. Botvina, and V. G. Kudryashov, “Strength and plasticity. Fracture under the action of short-term loads. Ductile and brittle fracture,” in: Physical Metallurgy and Heat Treatment [in Russian], Izd. Vsesoyuz. Inst. Nauch. i Tekh. Inf., Moscow (1971), pp. 54–101.

    Google Scholar 

  51. J. H. Weber and R. W. Hertzberg, “Effect of thermomechanical processing on fatigue crack propagation,” Met. Trans.,4, p. 595–601 (1973).

    Google Scholar 

  52. A. G. Pineau and R. M. Pelloux, “Influence of strain-induced martensitic transformation on fatigue crack growth rates in stainless steels,” Met. Trans.,5, 1103–1112 (1974).

    Google Scholar 

  53. K. Tanaka, C. Masuda, and S. Nishijiama, “The generalized relationship between the parameters C and m of Paris' law for fatigue crack growth,” Scr. Met.,16, No. 3, 259–264 (1981).

    Google Scholar 

  54. N. M. Grinberg, Rules of Fatigue Crack Growth in Stages IIa and IIb [in Russian], Fiz.- Tekh. Inst. Niz. Temp. Akad. Nauk UkrSSR, Moscow (1983) (Preprint No. 28).

    Google Scholar 

  55. L. R. Botvina, S. Ya. Yarema, O. P. Ostash, and I. B. Polutranko, “The kinetics of fatigue fracture of AT3 titanium alloy in air, distilled water, and a 3.5% aqueous solution of NaCl,” Fiz.-Khim. Mekh. Mater., No. 2, 17–22 (1984).

    Google Scholar 

  56. C. Robin and G. Pluvinage, “Fatigue threshold in a 2618 A aluminum alloy,” Fatigue Eng. Mater. Struct.,3, No. 2, 147–157 (1980).

    Google Scholar 

  57. L. R. Botvina and V. N. Shabalina, “The influence of a stress raiser on the resistance and fractographic features of the fracture of D16T aluminum alloy,” in: The Fatigue Strength of Materials and Structural Elements at Sonic and Ultrasonic Loading Frequencies [in Russian], Naukova, Dumka, Kiev (1977), pp. 91–97.

    Google Scholar 

  58. S. Ya. Yarema, O. P. Ostash, O. D. Zinyuk, and A. N. Vaschenko, “The development of fatigue cracks in MA2-1 magnesium alloy,” Fiz.-Khim. Mekh. Mater., No. 1, 64–69 (1980).

    Google Scholar 

  59. RD 50-345-82. Method Instructions. Calculations and Tests for Strength. Methods of Mechanical Tests of Metals. Determination of the Characteristics of Crack Resistance (Fracture Toughness) in Cyclic Loading [in Russian], Standartov, Moscow (1983).

  60. J. E. King, “Effects of grain size and microstructure on:threshold values and near threshold crack growth in powder-formed Ni-base superalloy,” Met. Sci.,16, No. 7, 345–355 (1982).

    Google Scholar 

  61. N. R. Moody and W. W. Gerberich, “The effect of hydrogen on fatigue and dislocatir on behavior of an α/β titanium alloy,” Fatique Eng. Meter. Struct.,5, No. 1, 57–70 (1982).

    Google Scholar 

  62. W. J. D. Shaw and I. Le May, “Segmented fitting of fatigue crack growth data,” Fatigue Eng. Mater. Struct.,6, No. 4, 367–375 (1983).

    Google Scholar 

  63. L. R. Botvina, “A criterion of fatigue fracture characterizing the start of developed plastic flow at a crack tip,” in: The Cyclic Fracture Toughness of Metals and Alloys [in Russian], Nauka, Moscow (1981), pp. 53–59.

    Google Scholar 

  64. L. R. Botvina and V. N. Shabalina, “The kinetics of fatigue crack growth in high-frequency loading,” in: The Strength of Materials and Structural Elements at Sonic and Ultrasonic Loaing Frequencies [in Russian], Naukova Dumka, Kiev (1980), pp. 73–78.

    Google Scholar 

Download references

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 21, No. 2, pp. 46–55, March–April, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botvina, L.R., Limar', L.V. Relationship of the spacing of the fatigue striations to the range in the stress intensity factor. Mater Sci 21, 144–152 (1985). https://doi.org/10.1007/BF01150631

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150631

Keywords

Navigation