Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. W. H. Bamford, “The use of data on fatigue crack propagation in a corrosive medium for analysis of the integrity of nuclear reactor tanks, “ Teor. Osn Insh. Rasch.,101, No. 3, 1–17 (1979).

    Google Scholar 

  2. P. M. Scott, “Corrosion fatigue in pressure vessel steels for light-water reactors,” Met. Sci.,13, No. 7, 396–401 (1979).

    Google Scholar 

  3. P. Scott and S. Tomkins, “The value of corrosion fatigue in evaluation of the reliability of water reactos,” in: The Corrosion Fatigue of Metals. Proceedings of the First Soviet-English Seminar [in Russian], Naukova Dumka, Kiev (1982), pp. 130–330.

    Google Scholar 

  4. M. Sudzuki, H. Takahasi, T. Kondo, and H. Nakahima, “The effects of medium-strengthened crack growth in constructional steels for water-cooled nuclear reactors,” KE No. 51824, Vsesoyuz. Tsentr Perevodov (1983).

  5. P. M. Scott, B. Tomkins, and A. J. Foreman, “Development of engineering codes of practice for corrosion fatigue,” Trans. ASME: J. Press. Vessel Technol.,105, No. 3, 255–262 (1983).

    Google Scholar 

  6. V. I. Pokhmurskii, I. P. Gnyp, A. A. Popov, et al., “Method aspects of autoclave tests of compact specimens for cyclic crack resistance,” Fiz.-Khim. Mekh. Mater., No. 1, 81–83 (1984).

    Google Scholar 

  7. P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Crack, and T. R. Mager, “Extensive study of fatigue crack growth rates in A 533 and A 508 steels,” in: Stress Analysis and Growth of Crack. ASTM STP 513, Philadelphia (1972), pp. 141–176.

  8. Ritchie, Spegi, and Moss, “The growth of a fatigue crack in 2.25 steel for pressure vessels in air and in water with a range of stress intensity close to threshold,” Teort. Osn. Inzh. Rasch.,102, No. 3, 57–65 (1980).

    Google Scholar 

  9. V. T. Troshchenko, P. V. Yasnii, V. V. Pokrovskii, and A. A. Popov, “The influence of temperature and loading asymmetry on the cyclic crack resistance of 15Kh2NMFA steel,” Probl. Prochn., No. 10, 3–7 (1981).

    Google Scholar 

  10. S. Ya. Yarema and S. I. Mikitishin, “An analytical description of fatigue failure curves of materials,” Fiz.-Khim. Mekh. Mater., No. 6, 47–54 (1975).

    Google Scholar 

  11. S. Ya. Yarema, “An investigation of fatigue crack growth and kinetic fatigue failure curves,” ibid., No. 4, 3–22 (1977).

    Google Scholar 

  12. I. P. Gnyp, “Phenomenological aspects of the influence of cyclic loading parameters on corrosion-fatigue crack growth,” ibid., No. 4, 40–44 (1984).

    Google Scholar 

  13. ASME Boiler and Pressure Vessel Code. Section XI. Appendix A (1980), pp. 221–244.

  14. R. P. Wei and J. D. Landes, “Correlation between crack growth in high-strength steel,” Mater. Res. Stand.,9, No. 7, 25–46 (1969).

    Google Scholar 

  15. O. N. Romaniv, Ya. N. Gladkii, and G. N. Nikiforchin, “One calculation hypothesis proposed for determination of the influence of corrosive media on the cyclic crack resistance of metals and alloys,” Fiz.-Khim. Mekh. Mater., No. 5, 19–26 (1978).

    Google Scholar 

  16. W. H. Bamford, “The effect of pressurized water environment of fatigue crack propagation of pressure vessel steel,” in: The Influence of Environment on Fatigue, No. 4, 51–56 (1977).

    Google Scholar 

  17. G. C. Salivar and D. L. Creighton, “Effect of frequency and environment on fatigue crack propagation of SA 533 B-1 steel,” Eng. Fract. Mech.,14, No. 2, 337–352 (1981).

    Google Scholar 

  18. I. I. Vasilenko and V. I. Kapinos, “The role of adsorption reduction in strength, solution, and hydrogen embrittlement in fatigue failure of steels in media,” in: The Corrosion Fatigue of Metals. Proceedings of the First Soviet-English Seminar [in Russian], Naukova Dumka, Kiev (1982), pp. 141–174.

    Google Scholar 

  19. Sedzi, Takahasi, Sudzuki, and Kondo, “A new parameter charcaterizing crack propagation in corrosion fatigue,” Teor. Osn. Inzh. Rasch.,103, No. 4, 31–46 (1981).

    Google Scholar 

  20. P. M. Scott and A. E. Truswell, “Corrosion fatigue crack growth in reactor pressure vessel steels in PWR primary water,” Trans. ASME: J. Press. Vessel Technol.,105, 245–254 (1983).

    Google Scholar 

  21. N. E. Atanasiu and B. R. Irimescu, “Fatigue crack propagation and threshold of type 304L austenitic stainless steel,” in: Mechanical Behavior of Materials Proceedings of the 4th International Conference, Stockholm, Pergamon Press, Oxford et al. (1983), pp. 841–847.

    Google Scholar 

  22. V. V. Panasyuk and O. N. Romaniv, “The mechanics of corrosion-fatigue failure,” in: The Corrosion Fatigue failure,” in: The Corrosion Fatigue of Metals: Proceedings of the First Soviet-English Seminar [in Russian], Naukova Dumka, Kiev (1982), pp. 39–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 21, No. 2, pp. 32–34, March–April, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokhmurskii, V.I., Zubchenko, A.S., Popov, A.A. et al. Influence of reactor water of nominal parameters on fatigue crack growth rate in 15Kh2NMFA steel. Mater Sci 21, 130–133 (1985). https://doi.org/10.1007/BF01150628

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150628

Keywords

Navigation