Skip to main content
Log in

Thermochemical excess properties of multicomponent systems: Representation and estimation from binary mixing data

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A general equation for the estimation of thermodynamic excess properties of multicomponent systems from observed excess properties of the various binary combinations of the components has been developed, based on a simple model of the multicomponent system. This estimation takes the form

$$\Delta \bar Z_{12...N}^{ex} = \sum\limits_{i = 1}^N {\sum\limits_{j > i}^N {(X_i + X_j )(f_i + f_j )(\Delta \bar Z_{ij}^{ex} )^* } } $$

in which\((\Delta \bar Z_{ij}^{ex} )^* \) is the molar excess property (enthalpy, entropy, volume, free energy, etc.), of the binary system with components at the same molar ratio as in the multicomponent system, and fi, fj are weighted mole fractions using weighting factors based on the excess properties of the binary systems. The important features of this equation are: it is applicable to a broad range of thermodynamic properties, its application to both integral and differential mixing properties is independent of the manner in which the binary mixing data is represented (Redlich-Kister equation, Wilson equation, etc.), and it provides reasonably accurate predictions ranging from quite good for simple systems of nonspecific interactions to only fair for associated solutions. This equation is recommended as a point-of-departure for mathematical representation of experimental data for multicomponent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Scatchard, S. E. Wood, and J. M. Mochel,J. Am. Chem. Soc. 62, 712 (1940).

    Google Scholar 

  2. K. Wohl,Am. Inst. Chem. Engrs. 42, 215 (1946).

    Google Scholar 

  3. O. Redlich and A. T. Kister,Ind. Eng. Chem. 40, 345 (1948).

    Google Scholar 

  4. G. Scatchard, L. B. Ticknor, J. R. Goates, and E. R. McCartney,J. Am. Chem. Soc. 74, 3721 (1952).

    Google Scholar 

  5. C. C. Tsao and J. M. Smith, ‘Applied Thermodynamics’,Chem. Eng. Prog. Symp. Series No. 7 49, 107 (1953).

    Google Scholar 

  6. J. B. Knobeloch and C. E. Schwartz,J. Chem. Eng. Data 7, 386 (1962).

    Google Scholar 

  7. A. R. Mathieson and J. C. J. Thynne,J. Chem. Soc. 3713 (1956).

  8. F. Kohler,Montash. Chem. 91, 738 (1960).

    Google Scholar 

  9. G. W. Toop,Trans. TMS-AIME 233, 850 (1965).

    Google Scholar 

  10. C. Colinet, D.E.S., University of Grenoble, France, (1967).

  11. K. T. Jacob and K. Fitzner,Thermochemica Acta,18, 197 (1977).

    Google Scholar 

  12. S. V. Meschel and O. J. Kleppa,J. Chem. Phys. 48, 5146 (1968).

    Google Scholar 

  13. R. P. Rastogi, J. Nath, and S. S. Das,J. Chem. Eng. Data 22, 249 (1977).

    Google Scholar 

  14. G. M. Wilson,J. Am. Chem. Soc. 86, 127 (1964).

    Google Scholar 

  15. J. F. Heil and J. M. Prausnitz,AIChE J. 12, 678 (1966).

    Google Scholar 

  16. H. Renon and J. M. Prausnitz,AIChE J. 14, 135 (1968).

    Google Scholar 

  17. AN. Andiappan and A. Y. McLean,Can. J. Chem. Eng. 50, 384 (1972).

    Google Scholar 

  18. J. M. Marina and D. P. Tassios,Ind. Engng. Chem. Proc. Des. Dev. 12, 67 (1973).

    Google Scholar 

  19. I. Nagata,A. Phys. Chemie (Leipzig)252, 305 (1973);254, 273 (1973);259, 1151 (1978).

    Google Scholar 

  20. I. Nagata,Fluid Phase Equilibra 1, 211 (1977).

    Google Scholar 

  21. I. Nagata,J. Chem. Eng. Data 20, 110 (1975).

    Google Scholar 

  22. I. Nagata,J. Chem. Eng. Data 22, 249 (1977).

    Google Scholar 

  23. E. L. Taylor and G. L. Bertrand,J. Solution Chem. 3, 479 (1974).

    Google Scholar 

  24. T. E. Burchfield and G. L. Bertrand,J. Solution Chem. 4, 205 (1975).

    Google Scholar 

  25. W. E. Acree, Jr. and G. L. Bertrand,J. Phys. Chem. 81, 1170 (1977).

    Google Scholar 

  26. T. E. Burchfield, Ph.D. Dissertion, University of Missouri-Rolla, (1977).

  27. W. E. Acree, Jr. and G. L. Bertrand,J. Phys. Chem. 83, 2355 (1979).

    Google Scholar 

  28. W. E. Acree, Jr., Ph.D. Dissertion, University of Missouri-Rolla, (1981).

  29. W. E. Acree, Jr. and G. L. Bertrand,J. Pharm. Sci. 70, 1033 (1981).

    Google Scholar 

  30. W. E. Acree, Jr. and J. H. Rytting,J. Pharm. Sci. 71, 201 (1982).

    Google Scholar 

  31. W. E. Acree, Jr. and J. H. Rytting,Int. J. Pharm. 10, 231 (1982).

    Google Scholar 

  32. W. E. Acree, Jr.,J. Phys. Chem. 86, 1461 (1982).

    Google Scholar 

  33. W. E. Acree, Jr. and J. H. Rytting,J. Pharm. Sci. 72, 292 (1983).

    Google Scholar 

  34. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelly,Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, (Metals Park, Ohio, 1973).

    Google Scholar 

  35. J. W. Morris, P. J. Mulvey, M. M. Abbott, and H. C. Van Ness,J. Chem. Eng. Data 20, 403 (1975).

    Google Scholar 

  36. J. P. Shatas, Jr., M. M. Abbott, and H. C. Van Ness,J. Chem. Eng. Data 20, 406 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, G.L., Acree, W.E. & Burchfield, T.E. Thermochemical excess properties of multicomponent systems: Representation and estimation from binary mixing data. J Solution Chem 12, 327–346 (1983). https://doi.org/10.1007/BF01150442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150442

Key words

Navigation