Skip to main content
Log in

Characterization of industrial materials by small angle X-ray scattering

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Small angle X-ray scattering (SAXS) techniques have enabled remarkable progress to be made in both the experimental devices and algorithms of data processing. We have applied SAXS to the characterization of common industrial materials such as carbon fibres,γ-alumina, and poly-propylene films. For carbon fibres, the microporosity has been investigated by estimating the cross-sectional dimensions of the microvoids in the powdered specimens as well as in the aligned fibre bundles. The average particle size ofγ-alumina has been evaluated, and related to the heat-treatment conditions. Correlation-function analysis has revealed the changes in lamellar structure of polypropylene films induced by annealing. SAXS is shown to have the potential to be widely used as a practical method for characterizing materials of industrial importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Guinier andG. Fournet, “Small-Angle Scattering of X-rays” (Wiley, New York, 1955).

    Google Scholar 

  2. O. Kratky, in “Progress in Biophysics”, Vol. 13 (Pergamon Press, New York, 1963) p. 105.

    Google Scholar 

  3. H. Brumberger, “Small-Angle X-ray Scattering” (Gordon and Breach, New York, 1967).

    Google Scholar 

  4. K. Hess andH. Kiessig,Z. Phys. Chem. 193 (1944) 196.

    Google Scholar 

  5. O. Kratky,J. Polym. Sci. 3 (1948) 195.

    Google Scholar 

  6. D. Heikens, P. H. Hermans andA. Weidinger,Nature 170 (1952) 369.

    Google Scholar 

  7. O. Glatter andO. Kratky, “Small Angle X-ray Scattering” (Academic Press, London, 1982).

    Google Scholar 

  8. D. J. Johnson andC. N. Tyson,J. Phys. D 2 (1969) 787.

    Google Scholar 

  9. Idem., J. Phys. D 3 (1970) 526.

    Google Scholar 

  10. R. Perret andW. Ruland,J. Appl. Crystallogr. 1 (1968) 308.

    Google Scholar 

  11. W. Ruland,J. Polym. Sci. C 28 (1969) 143.

    Google Scholar 

  12. R. Perret andW. Ruland,J. Appl. Crystallogr. 2 (1969) 209.

    Google Scholar 

  13. Idem., ibid. 3 (1970) 525.

    Google Scholar 

  14. M. Shioya andA. Takaku,J. Appl. Phys. 58 (1985) 4074.

    Google Scholar 

  15. Ming-Ya Tang, G. G. Rice, J. F. Fellers andJ. S. Lin,ibid. 60 (1986) 803.

    Google Scholar 

  16. M. H. Jellinek andI. Fankuchen,Ind. Eng. Chem. 37 (1945) 158.

    Google Scholar 

  17. M. H. Jellinek, E. Solomon andI. Fankuchen,ibid. 38 (1946) 172.

    Google Scholar 

  18. C. G. Shull andL. C. Roess,J. Appl. Phys. 18 (1947) 295.

    Google Scholar 

  19. L. C. Roess andC. G. Shull,ibid. 18 (1947) 308.

    Google Scholar 

  20. G. F. Neilson,J. Appl. Crystallogr. 6 (1973) 386.

    Google Scholar 

  21. C. G. Vonk,ibid. 9 (1976) 433.

    Google Scholar 

  22. I. S. Fedorova andP. W. Schmidt,ibid. 11 (1978) 405.

    Google Scholar 

  23. O. Glatter,ibid. 13 (1980) 7.

    Google Scholar 

  24. R. Hosemann andS. N. Bagchi, “Direct Analysis of Diffraction by Matter” (North-Holland, Amsterdam, 1962).

    Google Scholar 

  25. R. Hosemann,J. Appl. Phys. 34 (1963) 25.

    Google Scholar 

  26. V. I. Gerasimov andD. Ya. Tsvankin,Vysokomol. Soed. A11 (1969) 2652.

    Google Scholar 

  27. V. I. Gerasimov, Ya. V. Genin andD. Ya. Tsvankin,J. Polym. Sci., Polym. Phys. Edn 12 (1974) 2035.

    Google Scholar 

  28. C. G. Vonk andG. Kortleve,Kolloid Z. Z. Polym. 220 (1967) 19.

    Google Scholar 

  29. G. R. Strobl andM. Schneider,J. Polym. Sci., Polym. Phys. Edn. 18 (1980) 1343.

    Google Scholar 

  30. P. Debye andA. M. Bueche,J. Appl. Phys. 20 (1949) 518.

    Google Scholar 

  31. G. Porod,Acta Phys. Austriaca 2 (1948) 255.

    Google Scholar 

  32. O. Glatter,J. Appl. Cryst. 12 (1977) 166.

    Google Scholar 

  33. A. Guinier,Ann. Phys. 12 (1939) 161.

    Google Scholar 

  34. G. Porod,Kolloid Z. 124 (1951) 83.

    Google Scholar 

  35. Idem., ibid. 125 (1952) 51.

    Google Scholar 

  36. B. A. Fedorov andV. G. Aleshin,Vysokomol. Soed. 8 (1966) 1506.

    Google Scholar 

  37. M. Deutsch andM. Luban,J. Appl. Crystallogr. 11 (1978) 87.

    Google Scholar 

  38. Idem., ibid. 11 (1978) 98.

    Google Scholar 

  39. M. Luban andM. Deutsch,ibid. 13 (1980) 233.

    Google Scholar 

  40. A. Savitzky andM. J. E. Golay,Anal. Chem. 36 (1964) 1627.

    Google Scholar 

  41. J. Steinier, Y. Termonia andJ. Deltour,ibid. 44 (1972) 1906.

    Google Scholar 

  42. V. Luzzati,Acta Crystallogr. 13 (1960) 939.

    Google Scholar 

  43. R. E. Franklin,ibid. 3 (1950) 107.

    Google Scholar 

  44. R. E. Franklin,Proc. R. Soc. A 209 (1951) 196.

    Google Scholar 

  45. P. Debye, H. R. Anderson andH. Brumberger,J. Appl. Phys. 28 (1957) 679.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasanuma, Y., Kitano, Y. & Ishitaini, A. Characterization of industrial materials by small angle X-ray scattering. J Mater Sci 24, 1133–1139 (1989). https://doi.org/10.1007/BF01148810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148810

Keywords

Navigation