Journal of Materials Science

, Volume 24, Issue 3, pp 1133–1139 | Cite as

Characterization of industrial materials by small angle X-ray scattering

  • Yuji Sasanuma
  • Yukishige Kitano
  • Akira Ishitaini
Papers

Abstract

Small angle X-ray scattering (SAXS) techniques have enabled remarkable progress to be made in both the experimental devices and algorithms of data processing. We have applied SAXS to the characterization of common industrial materials such as carbon fibres,γ-alumina, and poly-propylene films. For carbon fibres, the microporosity has been investigated by estimating the cross-sectional dimensions of the microvoids in the powdered specimens as well as in the aligned fibre bundles. The average particle size ofγ-alumina has been evaluated, and related to the heat-treatment conditions. Correlation-function analysis has revealed the changes in lamellar structure of polypropylene films induced by annealing. SAXS is shown to have the potential to be widely used as a practical method for characterizing materials of industrial importance.

Keywords

Particle Size Carbon Fibre Average Particle Average Particle Size Fibre Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guinier andG. Fournet, “Small-Angle Scattering of X-rays” (Wiley, New York, 1955).Google Scholar
  2. 2.
    O. Kratky, in “Progress in Biophysics”, Vol. 13 (Pergamon Press, New York, 1963) p. 105.Google Scholar
  3. 3.
    H. Brumberger, “Small-Angle X-ray Scattering” (Gordon and Breach, New York, 1967).Google Scholar
  4. 4.
    K. Hess andH. Kiessig,Z. Phys. Chem. 193 (1944) 196.Google Scholar
  5. 5.
    O. Kratky,J. Polym. Sci. 3 (1948) 195.Google Scholar
  6. 6.
    D. Heikens, P. H. Hermans andA. Weidinger,Nature 170 (1952) 369.Google Scholar
  7. 7.
    O. Glatter andO. Kratky, “Small Angle X-ray Scattering” (Academic Press, London, 1982).Google Scholar
  8. 8.
    D. J. Johnson andC. N. Tyson,J. Phys. D 2 (1969) 787.Google Scholar
  9. 9.
    Idem., J. Phys. D 3 (1970) 526.Google Scholar
  10. 10.
    R. Perret andW. Ruland,J. Appl. Crystallogr. 1 (1968) 308.Google Scholar
  11. 11.
    W. Ruland,J. Polym. Sci. C 28 (1969) 143.Google Scholar
  12. 12.
    R. Perret andW. Ruland,J. Appl. Crystallogr. 2 (1969) 209.Google Scholar
  13. 13.
    Idem., ibid. 3 (1970) 525.Google Scholar
  14. 14.
    M. Shioya andA. Takaku,J. Appl. Phys. 58 (1985) 4074.Google Scholar
  15. 15.
    Ming-Ya Tang, G. G. Rice, J. F. Fellers andJ. S. Lin,ibid. 60 (1986) 803.Google Scholar
  16. 16.
    M. H. Jellinek andI. Fankuchen,Ind. Eng. Chem. 37 (1945) 158.Google Scholar
  17. 17.
    M. H. Jellinek, E. Solomon andI. Fankuchen,ibid. 38 (1946) 172.Google Scholar
  18. 18.
    C. G. Shull andL. C. Roess,J. Appl. Phys. 18 (1947) 295.Google Scholar
  19. 19.
    L. C. Roess andC. G. Shull,ibid. 18 (1947) 308.Google Scholar
  20. 20.
    G. F. Neilson,J. Appl. Crystallogr. 6 (1973) 386.Google Scholar
  21. 21.
    C. G. Vonk,ibid. 9 (1976) 433.Google Scholar
  22. 22.
    I. S. Fedorova andP. W. Schmidt,ibid. 11 (1978) 405.Google Scholar
  23. 23.
    O. Glatter,ibid. 13 (1980) 7.Google Scholar
  24. 24.
    R. Hosemann andS. N. Bagchi, “Direct Analysis of Diffraction by Matter” (North-Holland, Amsterdam, 1962).Google Scholar
  25. 25.
    R. Hosemann,J. Appl. Phys. 34 (1963) 25.Google Scholar
  26. 26.
    V. I. Gerasimov andD. Ya. Tsvankin,Vysokomol. Soed. A11 (1969) 2652.Google Scholar
  27. 27.
    V. I. Gerasimov, Ya. V. Genin andD. Ya. Tsvankin,J. Polym. Sci., Polym. Phys. Edn 12 (1974) 2035.Google Scholar
  28. 28.
    C. G. Vonk andG. Kortleve,Kolloid Z. Z. Polym. 220 (1967) 19.Google Scholar
  29. 29.
    G. R. Strobl andM. Schneider,J. Polym. Sci., Polym. Phys. Edn. 18 (1980) 1343.Google Scholar
  30. 30.
    P. Debye andA. M. Bueche,J. Appl. Phys. 20 (1949) 518.Google Scholar
  31. 31.
    G. Porod,Acta Phys. Austriaca 2 (1948) 255.Google Scholar
  32. 32.
    O. Glatter,J. Appl. Cryst. 12 (1977) 166.Google Scholar
  33. 33.
    A. Guinier,Ann. Phys. 12 (1939) 161.Google Scholar
  34. 34.
    G. Porod,Kolloid Z. 124 (1951) 83.Google Scholar
  35. 35.
    Idem., ibid. 125 (1952) 51.Google Scholar
  36. 36.
    B. A. Fedorov andV. G. Aleshin,Vysokomol. Soed. 8 (1966) 1506.Google Scholar
  37. 37.
    M. Deutsch andM. Luban,J. Appl. Crystallogr. 11 (1978) 87.Google Scholar
  38. 38.
    Idem., ibid. 11 (1978) 98.Google Scholar
  39. 39.
    M. Luban andM. Deutsch,ibid. 13 (1980) 233.Google Scholar
  40. 40.
    A. Savitzky andM. J. E. Golay,Anal. Chem. 36 (1964) 1627.Google Scholar
  41. 41.
    J. Steinier, Y. Termonia andJ. Deltour,ibid. 44 (1972) 1906.Google Scholar
  42. 42.
    V. Luzzati,Acta Crystallogr. 13 (1960) 939.Google Scholar
  43. 43.
    R. E. Franklin,ibid. 3 (1950) 107.Google Scholar
  44. 44.
    R. E. Franklin,Proc. R. Soc. A 209 (1951) 196.Google Scholar
  45. 45.
    P. Debye, H. R. Anderson andH. Brumberger,J. Appl. Phys. 28 (1957) 679.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Yuji Sasanuma
    • 1
  • Yukishige Kitano
    • 1
  • Akira Ishitaini
    • 1
  1. 1.Toray Research Center, Inc.ShigaJapan

Personalised recommendations