Skip to main content
Log in

A model for estimating the bulk modulus of polycomponent inorganic oxide glasses

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new theory which allows the bulk modulus of polycomponent oxide glasses to be estimated to a precision of about ±7% or better, is described. It is suggested that the bulk modulus is approximately proportional to the product of the reduced Madelung constant, the mean valence charge product weighted by the relative ionicities of the various bonds, the fourth power of the reciprocal molar volume per ion pair, and a factor less than 1 which increases with the mean stiffness of bonds. The relationship can be simplified by assuming that the ionicity and stiffness factors cancel and the important result is that the product expressing the theoretical bulk modulus can be evaluated solely from a knowledge of the coordination numbers in the crystalline forms of the component oxides, and the glass composition and density. A good correlation between this simplified product and the experimental modulus of a large range of phosphate and silicate glasses is obtained, providing that the mean valence charge product does not exceed the value obtaining in the parent glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Lowenstein,Phys. Chem. Glasses 2 (1961) 69.

    Google Scholar 

  2. A. Makishima andJ. D. Mackenzie,J. Non-Cryst. Solids 12 (1973) 35.

    Google Scholar 

  3. Idem, ibid. 17 (1975) 147.

    Google Scholar 

  4. C. Zwikker, “Physical properties of Solid Materials” (Interscience, New York, 1954) p. 91.

    Google Scholar 

  5. O. L. Anderson, in “Physical Acoustics IIIB” edited by W. P. Mason (Academic, New York, 1965) pp. 43, 64–75.

    Google Scholar 

  6. O. L. Anderson andJ. E. Nafe,J. Geophys. Res. 70 (1965) 3951.

    Google Scholar 

  7. O. L. Anderson andN. Soga,ibid. 72 (1967) 5754.

    Google Scholar 

  8. D. L. Anderson,ibid. 74 (1969) 3857.

    Google Scholar 

  9. J. J. Gilman, “Micromechanics of flow in Solids” (McGraw-Hill, New York, 1969) pp. 29–42.

    Google Scholar 

  10. O. L. Anderson andD. L. Anderson,J. Geophys. Res. 75 (1971) 3494.

    Google Scholar 

  11. O. L. Anderson, in “The Nature of the Solid Earth” edited by Eugene Robertson (McGraw-Hill, New York, 1972) Ch. 21, pp. 576–613.

    Google Scholar 

  12. G. P. Davies,Geophys. J. Astronom. Soc. G.B. 44 (1976) 625.

    Google Scholar 

  13. N. Soga andO. L. Anderson, 7th International Congress on Glass, Brussels (1965) (Inst. Nat. du Verre, Charleroi, Belgium, 1966), paper 37.

    Google Scholar 

  14. O. L. Anderson,J. Geophys. Res. 71 (1966) 4963.

    Google Scholar 

  15. D. L. Anderson, in “The Earth's Mantle” edited by K. Runcorn (Pergamon, Oxford, 1966) Ch. 3.

    Google Scholar 

  16. N. Soga, R. Ota andM. Kunugi, in “Mechanical Behaviour of Materials” Vol. 4, edited by S. Tiari and M. Kunugi (Society of Materials Science, Kyoto, 1972) pp. 336–73.

    Google Scholar 

  17. N. Soga, M. Kunugi andR. Ota,J. Phys. Chem. Solids 34 (1973) 2143.

    Google Scholar 

  18. F. Birch,J. Geophys. Res. 65 (1960) 1083.

    Google Scholar 

  19. B. Bridge andA. A. Higazy,Phys. Chem. Glasses 27 (1986) 1.

    Google Scholar 

  20. D. H. Templeton,J. Chem. Phys. 21 (1953) 2097.

    Google Scholar 

  21. Idem, ibid. 23 (1955) 1629.

    Google Scholar 

  22. D. Quane,J. Chem. Ed. 47 (1970) 397.

    Google Scholar 

  23. Q. C. Johnson andD. H. Templeton,J. Chem. Phys. 34 (1961) 2004.

    Google Scholar 

  24. M. P. Tosi,Solid State Phys. 16 (1964) 1.

    Google Scholar 

  25. A. A. Higazy andB. Bridge,J. Non-Cryst. Solids 72 (1985) 81.

    Google Scholar 

  26. B. Bridge andN. D. Patel,J. Mater. Sci. 21 (1986) 1187.

    Google Scholar 

  27. B. Bridge, N. D. Patel andD. N. Waters,Phys, Status Solidi (a) 77 (1983) 665.

    Google Scholar 

  28. B. Bridge,Phys. Chem. Glasses 29 (1988) 37.

    Google Scholar 

  29. V. V. Tarasov, “New Problems in the Physics of Glass” (Israel Programme for Scientific Translations, Jerusalem, 1963) Ch. 5.

    Google Scholar 

  30. R. R. Shaw andD. R. Uhlmann,J. Non-Cryst. Solids (1971) 237.

  31. A. V. Gladkov,Sov. Phys. Techn. Phys. 2 (1967) 612.

    Google Scholar 

  32. A. V. Gladkov andV. V. Tarasov,Structure of Glass 2 (1960) 227.

    Google Scholar 

  33. M. B. Field,J. Appl. Phys. 40 (1969) 2628.

    Google Scholar 

  34. J. M. Farley andG. A. Saunders,Phys. Status Solidi (a) 28 (1975) 199.

    Google Scholar 

  35. B. Bridge andN. Hashim, to be published.

  36. B. Bridge,J. Mater. Sci. Lett. 6 (1987) 736.

    Google Scholar 

  37. D. N. Wells, “Structural Inorganic Chemistry” 4th Edn (Clarendon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridge, B. A model for estimating the bulk modulus of polycomponent inorganic oxide glasses. J Mater Sci 24, 804–810 (1989). https://doi.org/10.1007/BF01148760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148760

Keywords

Navigation