Skip to main content
Log in

Microhardness of flux grown pure doped and mixed rare earth aluminates and orthochromites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The results of microhardness measurements on flux-grown crystals of (i) single (pure) rare earth aluminates RAlO3 (R = Eu, Gd, Dy, Er) and rare earth orthochromites RCrO3 (R = Y, Gd, Yb), (ii) rare earth aluminates doped with neodymium, erbium, ytterbium and holmium, and (iii) mixed rare earth aluminate crystals of the type (La1−x ) Pr(x)AlO3 (x=0, 0.25, 0.75 and 1.00) are presented. The variations in the microhardness value with load are non-linear in all cases. Kick's law fails to explain the observed variations. Instead, they are best explained by the application of the idea of materials resistance pressure in the modified law proposed by Hays and Kendall. The results indicate that the doping does not increase the hardness value of crystals in all cases. The hardness instead depends on the composition of the parent material as well as the dopant entering into the crystal lattice. Mixed rare earth aluminate crystals are shown to be harder than those of single rare earth aluminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hayden, W. G. Moffatt andJ. Wulff, “The Structure and Properties of Materials”, Vol. III “Mechanical Behaviour” (Wiley Eastern (P), New Delhi/New York, 1968) p. 1.

    Google Scholar 

  2. K. J. Pratap andV. Hari Babu,Bull. Mater. Sci. 2 (1980) 43.

    Google Scholar 

  3. J. R. Pandya andA. J. Shah Jr, Maharaja Sayajirao University, Baroda, India, Vol. XXX (1981) 53.

  4. D. Saber andA. M. Lejus,Mater. Res. Bull. 16 (1981) 1325.

    Google Scholar 

  5. F. Laville andA. M. Lejus,J. Crystal Growth 63 (1983) 426.

    Google Scholar 

  6. J. R. Pandya, L. J. Bhagia andA. J. Shah,Bull. Mater. Sci. 5 (1983) 79.

    Google Scholar 

  7. J. R. Pandya andL. J. Bhagia,Ind. J. Pure Appl. Phys. 22 (1984) 439.

    Google Scholar 

  8. K. S. Raju,Pramana 8 (1977) 266.

    Google Scholar 

  9. K. S. Raju, R. Godehardt, J. Hopee andE. Pippel,Crystal Res. Technol. 19 (1984) 1127.

    Google Scholar 

  10. K. Sangwal andA. R. Patel,J. Phys. D Appl. Phys. 7 (1974) 2031.

    Google Scholar 

  11. A. R. Patel andS. K. Arora,J. Mater. Sci. 12 (1977) 2124.

    Google Scholar 

  12. M. Lakshmipathi Rao andV. Hari Babu,Ind. J. Pure Appl. Phys. 16 (1978) 821.

    Google Scholar 

  13. K. Narasimha Reddy, M. Lakshmipathi Rao andV. Hari Babu,ibid. 17 (1979) 806.

    Google Scholar 

  14. A. R. Patel andS. K. Arora,Kristal Tech. 13 (1978) 1445.

    Google Scholar 

  15. U. V. Subba Rao andV. Hari Babu,Pramana 11 (1978) 149.

    Google Scholar 

  16. Idem, Ind. J. Phys. 54A (1980) 147.

    Google Scholar 

  17. N. S. Pandya, V. P. Bhatt, Ar Was andG. R. Pandya,Ind. J. Pure Appl. Phys. 15 (1977) 750.

    Google Scholar 

  18. V. P. Bhatt andC. F. Desai,Bull. Mater. Sci. 4 (1982) 23.

    Google Scholar 

  19. P. N. Kotru, K. K. Raina, S. K. Kachroo, B. M. Wanklyn,J. Mater. Sci. 19 (1984) 2582.

    Google Scholar 

  20. P. N. Kotru andB. L. Gupta, (1986) unpublished.

  21. P. N. Kotru, Anima Jain, A. K. Razdan andB. M. Wanklyn, (1986) unpublished.

  22. C. Hays andE. G. Kendall,Metallogr. 6 (1973) 275.

    Google Scholar 

  23. Barbara M. Wanklyn,J. Crystal Growth 5 (1969) 323.

    Google Scholar 

  24. G. Garton andB. M. Wanklyn,ibid. 1 (1967) 164.

    Google Scholar 

  25. G. Y. Chin, L. G. Vanuitert, M. L. Green andG. J. Zydrik,Scripta Metall. 6 (1972) 503.

    Google Scholar 

  26. J. R. Hopkins, J. A. Miller andJ. J. Martin,Phys. Lett. Solids A19 (1933) 591.

    Google Scholar 

  27. P. N. Kotru, Ashok K. Razdan, K. K. Raina andB. M. Wanklyn,J. Mater. Sci. 20 (1985) 3365.

    Google Scholar 

  28. J. W. Davison andW. H. Waughan,Rep. Naval. Res. Lab. Prog. 10 April (1958).

  29. H. Buckle,Metallurg. Rev. 4 (1959) 13.

    Google Scholar 

  30. G. P. Upit andS. A. Varchanya,Phys. Status Solidi A19 (1933) 591.

    Google Scholar 

  31. F. Kick, “Das Gesetz der proportionalen widerstnde and Seine Anwendung” (Felix, Leipzig, 1885).

    Google Scholar 

  32. F. Schultz andH. Hanemann,Z. Metallkde 33 (1941) 124.

    Google Scholar 

  33. E. B. Bergsman, “The Micro-hardness Tester” (Vector Pettersons, Stockholm, 1945).

    Google Scholar 

  34. A. R. G. Brown andE. Ineson,J. Iron Steel Inst. 169 (1951) 376.

    Google Scholar 

  35. R. Mitsche andE. M. Onitsch,Mikroskopie 3 (1948) 257.

    Google Scholar 

  36. W. Bischof andB. Wenderoff,Arch. Eisenhutlenw. 15 (1941–42) 497.

    Google Scholar 

  37. D. R. Tate,Trans. ASM 35 (1945) 374.

    Google Scholar 

  38. E. D. Bernhardt,Z. Metallkde 33 (1951) 135.

    Google Scholar 

  39. N. W. Thibault andN. L. Nyguist,Trans. ASM 38 (1947) 271.

    Google Scholar 

  40. R. Schulze,Feinwerktechnik 55 (1951) 190.

    Google Scholar 

  41. E. M. Onitsch,Mikroskopie 2 (1947) 131.

    Google Scholar 

  42. L. P. Tarasov andN. W. Thibault,Trans. ASM 38 (1947) 331.

    Google Scholar 

  43. R. F. Campbell, Q. Henderson andM. R. Donleavy,Ibid. 40 (1948) 954.

    Google Scholar 

  44. W. Rostoker,J. Inst. Metals 77 (1950) 175.

    Google Scholar 

  45. C. L. Saraf, PhD thesis, M. S. University, Baroda, and personal communication (1971).

    Google Scholar 

  46. A. Edner,Z. Phys. 73 (1932) 632.

    Google Scholar 

  47. W. Metag,Phys. Status Solidi 78 (1932) 363.

    Google Scholar 

  48. H. Shoenfeld,J. Appl. Phys. 75 (1932) 442.

    Google Scholar 

  49. R. L. Fleizcher,ibid. 33 (1962) 3504.

    Google Scholar 

  50. A. A. Urusovskaya, G. F. Dobrazhanski, N. L. Sizova, V. G. Govorkov, Yu. N. Martyshev,Sov. Phys. Crystallogr. 13 (1969) 899.

    Google Scholar 

  51. A. H. Cottrell, “Dislocations and plastic flow in crystals” (Oxford University, 1953) p. 58.

  52. J. N. Plendl andP. J. Gieliesie,Phys. Rev. 125 (1962) 828.

    Google Scholar 

  53. J. J. Gilman,J. Appl. Phys. 44 (1973) 982.

    Google Scholar 

  54. G. Y. Chin, V. L. G. Vitert, M. L. Green, G. J. Zydzik andT. V. Kometani,Ser. Met. 6 (1972) 475.

    Google Scholar 

  55. Idem, J. Amer. Ceram Soc. 56 (1973) 7.

    Google Scholar 

  56. A. R. Patel andC. C. Desai,J. Phys. D Appl. Phys. 3 (1970) 1645.

    Google Scholar 

  57. W. G. Johnston,J. Appl. Phys. 33 (1962) 2050.

    Google Scholar 

  58. J. S. Dryden, S. Morimoto andJ. S. Cook,Phil. Mag. 12 (1965) 116.

    Google Scholar 

  59. M. L. Green andG. Zydzik,Scripta Metall. 6 (1972) 10.

    Google Scholar 

  60. R. L. Fleischer,Acta Metall. 10 (1962) 835.

    Google Scholar 

  61. C. W. A. Newey,Trans. Brit. Ceram. Soc. 62 (1963) 739.

    Google Scholar 

  62. C. W. A. Newey, R. P. Harison andP. L. Pratt,Proc. Brit. Ceram. Soc. 6 (1966) 305.

    Google Scholar 

  63. N. Suszynksa,Phys. Status Solidi A6 (1971) 67.

    Google Scholar 

  64. A. F. Armington, H. Dosen andH. Lipson,J. Electron. Mater. 2 (1973) 127.

    Google Scholar 

  65. S. V. Labenets andV. I. Startsev,Sov. Phys. Solid State 10 (1968) 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotru, P.N., Razdan, A.K. & Wanklyn, B.M. Microhardness of flux grown pure doped and mixed rare earth aluminates and orthochromites. J Mater Sci 24, 793–803 (1989). https://doi.org/10.1007/BF01148759

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148759

Keywords

Navigation