Skip to main content
Log in

Particle assemblies in astrocytic plasma membranes are rearranged by various agentsin vitro and cold injuryin vivo

  • Published:
Journal of Neurocytology

Summary

Distinct aggregates of small intramembranous particles and assemblies characterize the P-face of freeze-fractured astrocytic membranes. To test the lability of the assemblies, astrocytes were treatedin vitro with different chemical agents andin vivo by cold injury. The assemblies appeared either to contain or be associated with protein because exposure to medium containing cycloheximide, an inhibitor of protein synthesis, led to a sharp decrease in assemblies, down to 1% of the control levels within three hours. To ascertain whether the assemblies were tethered to the cytoskeleton, the cells were treatedin vitro with disruptors of microtubules (colchicine) or microfilaments (cytochalasins); the assemblies became consistently rearranged. Protein denaturants, urea and guanidine HC1, brought about a selective aggregation of assembly with assembly. The lectin, concanavalin A, did not alter the distribution of the assemblies within the plane of the membrane fracture. Surface replicas ofin vitro, non-fractured, astrocytes revealed surface particles which did not resemble assemblies.In vivo, the plasma membranes of astrocytes were altered within minutes of cold injury to the brain surface. In the centre of the lesions, damaged astrocytes had assemblies that were clumped luce those ofin vitro astrocytes exposed to denaturants. In the periphery of the lesions, however, the assemblies did not aggregate but increased in number.

These results provide indirect evidence that assemblies may consist of protein, that the recognizable particle constituent of the assembly is confined to the interior of the membrane and is not present on the uncleaved cell surface, and that assemblies are connected with the cytoskeleton. Therefore, certain changes in the environment of the astrocyte caused by injuryin vivo or addition of chemical agentsin vitro alter the distribution of assemblies in the astrocytic plasma membrane either by a direct effect on the assemblies or indirectly by an alteration of the cytoplasmic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, A. C. (1973) The role of microfilaments and microtubules in cell movement, endocytosis and phagocytosis.Ciba Foundation Symposium 14, 109–48.

    PubMed  Google Scholar 

  • Anders, J. J. &Brightman, M. W. (1979a) Assemblies of particles in the cell membranes of developing, mature and reactive astrocytes.Journal of Neurocytology 8, 777–95.

    PubMed  Google Scholar 

  • Anders, J. J. &Brightman, M. W. (1979b) Freeze-fractured appearance of denatured intramembranous proteins.Journal of Cell Biology 82, 279a (abstract).

    Google Scholar 

  • Anders, J. J. &Brightman, M. W. (1980) Alterations of astrocytic intramembranous particles after exposure to cycloheximide or colchicine.European Journal of Cell Biology 22, 213 (abstract).

    Google Scholar 

  • Anders, J. J. &Brightman, M. W. (1981a) Initial changes in astrocytic membranes at the site of injury to the central nervous system.Anatomical Record 199, 9A (abstract).

    Google Scholar 

  • Anders, J. J. &Brightman, M. W. (1981b) Orthogonal assemblies of intramembranous particles-an attribute of the astrocyte. InEleventh International Congress of Anatomy, Part A: Glial and Neuronal Cell Biology. Progress in Clinical and Biological Research (edited byFederoff, S.), pp. 21–35. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Anders, J. J. &Brightman, M. W. (1981c) Alterations of astrocytic plasma membranes after exposure to high CO2 in vitro.Society for Neuroscience Abstracts 7, 423.

    Google Scholar 

  • Anders, J. J. &Pagnanelli, D. M. (1979) The protein nature and arrangement of intramembranous particles assemblies in normal and reactive astrocytes.Anatomical Record 193, 470 (abstract).

    Google Scholar 

  • Anderson, T. F. (1951) Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope.Transactions of the New York Academy of Science 13, 130–34.

    Google Scholar 

  • Bordi, C. &Perrelet, A. (1978) Orthogonal arrays of particles in plasma membranes of the gastric parietal cell.Anatomical Record 192, 297–304.

    PubMed  Google Scholar 

  • Branton, D. (1971) Freeze-etching studies of membrane structure.Philosophical Transactions of the Royal Society of London Series B 261, 133–8.

    PubMed  Google Scholar 

  • Cervos-Navarro, J. &Ferszt, R. (editors) (1981)Brain Edema Pathology, Diagnoses and Therapy. Advances in Neurology. Vol. 28, pp. 1–511. New York: Raven Press.

    Google Scholar 

  • Clasen, R. A., Cooke, P. M., Pandolfi, S., Boyd, D. &Raimondi, A. J. (1962) Experimental cerebral edema produced by focal freezing. 1. An anatomic study utilizing vital dye techniques.Journal of Neuropathology and Experimental Neurology 21, 570–95.

    Google Scholar 

  • Copeland, M. (1974) The cellular response to cytochalasin B: A critical overview.Cytologia 39, 709–27.

    PubMed  Google Scholar 

  • Dekruijff, B., Verkley, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Mombers, C., Noordam, P. C. &Degier, J. (1979) The occurrence of lipidic particles in lipid bilayers as seen by31PNMR and freeze-fracture electron microscopy.Biochimica et Biophysica Acta 555, 200–9.

    PubMed  Google Scholar 

  • Dermietzel, R. (1974) Junctions in the central nervous system of the cat. III. Gap junctions and membrane-associated orthogonal particle complexes (MOPC) in astrocytic membranes.Cell and Tissue Research 149, 121–35.

    PubMed  Google Scholar 

  • Edwards, H. H., Mueller, T. J. &Morrison, M. (1979) Distribution of transmembrane polypeptides in freeze-fracture.Science 203, 1343–6.

    PubMed  Google Scholar 

  • Elfvin, L. G. &Forsman, C. (1978) The ultrastructure of junctions between satellite cells in mammalian sympathetic ganglia as revealed by freeze-etching.Journal of Ultrastructure Research 63, 261–74.

    PubMed  Google Scholar 

  • Ellisman, M., Brooke, M. H., Kaiser, K. K. &Rash, J. E. (1978) Appearance in slow muscle sarcolemma of specializations characteristic of fast muscle after reinnervation by a fast muscle nerve.Experimental Neurology 58, 59–67.

    PubMed  Google Scholar 

  • Eng, L. F. &Bigbee, J. W. (1978) Immunohistochemistry of nervous system-specific antigens. InAdvances in Neurochemistry Vol. 3, (edited byAgranoff, B. W. &Aprison, M. H.), pp. 43–98. New York: Plenum Publishing Corp.

    Google Scholar 

  • Fowler, V. M., Luna, E. J., Hargreaves, W. R., Lansing-Taylor, D. &Branton, D. (1981) Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane.Journal of Cell Biology 88, 388–95.

    PubMed  Google Scholar 

  • Fox, J. E. B. &Phillips, D. R. (1981) Inhibition of actin polymerization in blood platelets by cytochalasins.Nature 292, 650–2.

    PubMed  Google Scholar 

  • Gilbert, D. (1978) 100 nm filaments.Nature 272, 577–8.

    Google Scholar 

  • Groschel-Stewart, U., Unsicker, K. &Leonhardt, H. (1979) Immunohistochemical demonstration of contractile proteins in astrocytes, marginal glial and ependymal cells in rat diencephalon.Cell and Tissue Research 180, 133–7.

    Google Scholar 

  • Hass, G. M. &Taylor, C. B. (1953) Quantitative studies of experimental production and treatment of acute closed cerebral injury.Archives of Neurological Psychiatry 69, 145–70.

    Google Scholar 

  • Hatton, J. D. &Ellisman, M. H. (1981) The distribution of orthogonal arrays and their relationship to intercellular junctions in neuroglia of the freeze-fractured hypothalamo-neurohypophysial system.Cell and Tissue Rsearch 215, 309–323.

    Google Scholar 

  • Hogan, J. C. &Manuelidis, L. (1976) Intramembrane particle distribution and lectin binding of glioblastoma cells after long term subculture.Acta Neuropathologica 36, 199–208.

    PubMed  Google Scholar 

  • Humbert, F., Pricam, C., Perrelet, A. &Orci, L. (1975) Specific plasma membranedifferentiations in the cells of the kidney collecting tubule.Journal of Ultrastructure Research 52, 13–20.

    PubMed  Google Scholar 

  • Inoue, S. &Hogg, J. C. (1977) Freeze-etch study of the tracheal epithelium of normal guinea pigs with particular reference to intercellular junctions.Journal of Ultrastructure Reseach 61, 89–99.

    Google Scholar 

  • Kreutziger, G. O. (1968) Freeze-etching of intercellular junctions of mouse liver. InProceedings of the 26th Meeting of the Electron microscope Society of America, p. 234. Baton Rouge: Claitors Publishing Division.

    Google Scholar 

  • Landis, D. M. D. &Reese, T. S. (1974) Arrays of particles in freeze-fractured astrocytic membranes.Journal of Cell Biology 60, 316–20.

    PubMed  Google Scholar 

  • Landis, D. M. D. &Reese, T. S. (1981) Astrocyte membrane structure: Changes after circulatory arrest.Journal of Cell Biology 88, 660–3.

    PubMed  Google Scholar 

  • Landis, D. M. D., Reese, T. S., Ornberg, R. L. &Graham, W. F. (1981) Substructure in astrocytic assemblies demonstrated by rapid freezing and low-temperature freeze-fracture.Society for Neuroscience Abstracts 7, 305.

    Google Scholar 

  • Luna, E. J., Fowler, V. M., Swanson, J., Branton, D. &Lansing-Taylor, D. (1981) A membrane cytoskeleton fromDictyostelium discoideum 1. Identification and partial characterization of an actin-binding activity.Journal of Cell Biology 88, 396–409.

    PubMed  Google Scholar 

  • Massa, P. T. &Mugnaini, E. (1982) Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: A freeze-fracture study.Neuroscience 7, 523–38.

    PubMed  Google Scholar 

  • Meyer, H. W. &Winkelman, H. (1970) Nachweis der Membranspaltung bei der Gefrieratzpreparation an Erythrozytenghosts und die Beeinflussung der Membranestruktur durch Hanstoff.Protoplasm 70, 233–46.

    Google Scholar 

  • Moore, P. B., Ownby, C. L. &Carraway, K. L. (1978) Interactions of cytoskeletal elements with the plasma membrane of sarcoma 180 ascites tumour cells.Experimental Cell Research 155, 331–42.

    Google Scholar 

  • Nabeshima, S., Reese, T. S., Landis, D. M. D. &Brightman, M. W. (1975) Junctions in the meninges and marginal glia.Journal of Comparative Neurology 164, 127–70.

    PubMed  Google Scholar 

  • Nakai, Y., Kudo, J. &Hashimoto, A. (1980) Specific cell membrane differentiation in the tanycytes and glial cells of the Organum Vasculosum of the Lamina Terminalis in dog.Journal of Electron Microscopy 29, 144–50.

    PubMed  Google Scholar 

  • Necas, O. &Svoboda, A. (1973) Effect of urea on the plasma membrane particles in yeast cells and protoplasts.Protoplasma 77, 453–66.

    PubMed  Google Scholar 

  • Pannese, E., Luciano, L., Iurato, S. &Reale, E. (1977) Intercellular junctions and other membrane specializations in developing spinal ganglia: A freeze-fracture study.Journal of Ultrastructure Research 60, 169–80.

    PubMed  Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. de F. (1976)The Fine Structure of the Nervous System, pp. 233–48. Philadelphia: W. B. Saunders Company.

    Google Scholar 

  • Pinto Da Silva, P., Parkison, C. &Dwyer, N. (1981) Fracture-label: cytochemistry of freeze-fracture faces in the erythrocyte membrane.Proceedings of the National Academy of Science USA 78, 343–7.

    Google Scholar 

  • Pollard, T. D. &Korn, E. D. (1973) Electron microscopic identification of actin associated with isolated amoeba plasma membranes.Journal of Biological Chemistry 248, 448–50.

    PubMed  Google Scholar 

  • Prescott, L. &Brightman, M. W. (1978) A technique for the freeze-fracture of tissue culture.Journal of Cell Science 301, 34–43.

    Google Scholar 

  • Rapoport, S. (1976)Blood Brain Barrier in Physiology and Medicine. New York: Raven Press.

    Google Scholar 

  • Rash, J. W., Staehelin, L. A. &Ellisman, M. H. (1974) Rectangular arrays of particulars on freeze-cleaved plasma membranes are not gap junctions.Experimental Cell Research 86, 187–90.

    PubMed  Google Scholar 

  • Reale, E. &Luciano, L. (1974) Introduction to freeze-fracture method in retinal research.Albrecht Von Graefes Archiv für Klinische und Experimentelle Opthalmologie 192, 73–87.

    Google Scholar 

  • Schmalbruch, H. (1979) ‘Square arrays’ in the sarcolemma of human skeletal muscle fibres.Nature 281, 145–6.

    PubMed  Google Scholar 

  • Schmechel, D. E., Brightman, M. W. &Barker, J. L. (1980) Localization of neuron-specific enolase in mouse spinal neurons grown in tissue culture.Brain Research 181, 391–400.

    PubMed  Google Scholar 

  • Sotelo, J. B., Tok, H., Lolait, S. J., Yildiz, A., Osung, O. &Holborow, E. J. (1980) Cytoplasmic intermediate filaments in cultured glial cells.Neuropathology and Applied Neurobiology 6, 291–8.

    PubMed  Google Scholar 

  • Spray, D. C., Harris, A. L. &Bennett, M. V. L. (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH.Science 211, 712–5.

    PubMed  Google Scholar 

  • Staehelin, L. A. (1972) Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching.Proceedings of the National Academy of Science USA 69, 1318–21.

    Google Scholar 

  • Thorn, W., School, H., Pfleiderer, G. &Mueldener, B. (1958) Metabolic processes in the brain at normal and reduced temperatures and under anoxic and ischemic conditions.Journal of Neurochemistry 2, 150–65.

    PubMed  Google Scholar 

  • Tsukita, S., Ishikawa, H. &Kurokawa, M. (1981) Isolation of 10-nm filaments from astrocytes in the mouse optic nerve.Journal of Cell Biology 88, 245–50.

    PubMed  Google Scholar 

  • Tourtellotte, M. E. &Zupnik, J. S. (1973) Freeze-fracturedAcholeplasma Malawi membranes: nature of particles observed.Science 179, 84–6.

    PubMed  Google Scholar 

  • Verkleij, A. J., Mombers, C., Gerritsen, W. J., Leuissen-Bijvelt, L. &Cullis, P. R. (1979) Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing.Biochimica et Biophysica Acta 555, 358–61.

    PubMed  Google Scholar 

  • Wang, E., Cross, R. K. &Choppin, W. (1979) Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia.Journal of Cell Biology 83, 320–37.

    PubMed  Google Scholar 

  • Weihing, R. R. (1979) The cytoskeleton and plasma membrane. InMethods and Achievements in Experimental Pathology Vol. 8 (edited byJasmin, G. &Cantin, M.), pp. 42–109. Basel: S. Karger.

    Google Scholar 

  • Wells, V. &Mallucci, L. (1978) Determination of cell form in cultured fibroblasts-role of surface components and cytokinetic elements.Experimental Cell Research 116, 301–12.

    PubMed  Google Scholar 

  • Yen, S. H. &Fields, K. L. (1981) Antibodies to neurofilament, glial filament and fibroblast intermediate filament proteins bind to different cell types of the nervous system.Journal of Cell Biology 88, 115–26.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anders, J.J., Brightman, M.W. Particle assemblies in astrocytic plasma membranes are rearranged by various agentsin vitro and cold injuryin vivo . J Neurocytol 11, 1009–1029 (1982). https://doi.org/10.1007/BF01148314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148314

Keywords

Navigation