Skip to main content
Log in

Effects of rubbery phase and absorbed water on impact-modified nylon 66

Part 2Fractography

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture surface micromorphology of noon 66 and its blends was examined. A patchy appearance, found at low ΔK values when levels of imbibed moisture and impact modifier are low, is believed to result from a void coalescence mechanism. At higher water contents and levels of impact-modification, the fracture surface assumes a rumpled appearance with numerous secondary fissures oriented normal to the crack direction; the inter-rumple spacings, however, do not correspond to the macroscopic growth rate, A model to explain rumple formation is presented. The fatigue fracture surface appearance of unmodified nylon 66 is found to depend on both moisture content and test temperature. Trans-spherulitic fracture is found when the test temperature is below the glass transition temperatureT g (measured at 110 Hz) for a given water content, while at higher test temperatures a high degree of drawing is evident. It is concluded that the fracture surface micromorphology of nylon 66 and its blends depend strongly on the viscoelastic state of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Hertzberg andJ. A. Manson, “Fatigue of Engineering Plastics” (Academic, New York, 1980).

    Google Scholar 

  2. R. W. Hertzberg, M. D. Skibo andJ. A. Manson, ASTM STP 675, (American Society for Testing and Materials, Philadelphia), 1979) p. 471.

    Google Scholar 

  3. P. E. Bretz, PhD thesis Lehigh University (1980).

  4. P. E. Bretz, R. W. Hertzberg andJ. A. Manson,J. Mater. Sci. 16 (1981) 2070.

    Google Scholar 

  5. J. R. White andJ. Teh,Polymer 20 (1979) 764.

    Google Scholar 

  6. P. E. Bretz, R. W. Hertzberg andJ. A. Manson,ibid. 22 (1981) 1272.

    Google Scholar 

  7. Idem, J. Appl. Polym. Sci. 27 (1982) 1707.

    Google Scholar 

  8. K. Friedrich,Fracture 3 (1977) 1119.

    Google Scholar 

  9. R. W. Hertzberg, M. D. Skibo andJ. A. Manson, ASTM STP 700 (American Society for Testing and Materials, Philadelphia, 1980) p. 49.

    Google Scholar 

  10. M. T. Hahn, R. W. Hertzberg andJ. A. Manson,J. Mater. Sci. 18 (1983) 3551.

    Google Scholar 

  11. M. T. Hahn, R. W. Hertzberg, J. A. Manson andL. H. Sperling,Polymer, in press.

  12. M. T. Hahn, R. W. Hertzberg andJ. A. Manson,J. Mater. Sci. 21 (1986) 31.

    Google Scholar 

  13. L. Engel, H. Klingele, G. W. Ehrenstein andH. Scraper, “An Atlas of Polymer Damage” translated by M. S. Welling (Prentice-Hall, Engelwood cliffs, New Jersey, 1981).

    Google Scholar 

  14. E. A. Flexman, jr, Proceedings of the International Conference on Toughening of Plastics, London, July 1978 (Rubber and Plastics Institute, London) p. 14.1.

    Google Scholar 

  15. R. N. Haward andI. Brough,Polymer 10 (1969) 724.

    Google Scholar 

  16. J. W. S. Hearle andI. E. Clarke, “Fatigue `81” edited by F. Sheratt and J. B. Sturgeon (Westbury House, Guilford, Surrey, England, 1981) p. 210.

    Google Scholar 

  17. M. I. Koran, “Nylon Plastics” (Wiley-Interscience, New York, 1973) p. 318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, M.T., Hertzberg, R.W. & Manson, J.A. Effects of rubbery phase and absorbed water on impact-modified nylon 66. J Mater Sci 21, 39–45 (1986). https://doi.org/10.1007/BF01144696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01144696

Keywords

Navigation