Skip to main content
Log in

Transport and utilization of ferrioxamine-E-bound iron inErwinia herbicola (Pantoea agglomerans)

  • Original Articles
  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

We have analyzed ferrioxamine-E-mediated iron uptake and metabolization inErwinia herbicola K4 (Pantoea agglomerans) by means of in vivo Mössbauer spectroscopy and radioactive labeling techniques. A comparison of cell spectra with the spectrum of ferrioxamine clearly demonstrates that ferrioxamine E is not accumulated in the cell, indicating a fast metal transfer. Only two major components of iron metabolism can be detected, a ferric and a ferrous species. At 30 min after uptake, 86% of the internalized metal corresponded to a ferrous ion compound and 14% to a ferric iron species. Metal transfer apparently involves a reductive process. With progressing growth, the oxidized species of the two major proteins becomes dominant. The two iron metabolites closely resemble species previously isolated fromEscherichia coli. These components of iron metabolism differ from bacterio-ferritin, cytochromes and most iron-sulfur proteins. All other iron-containing cellular components are at least one order of magnitude lower in concentration. We suggest that the ferrous and ferric iron species correspond to two different oxidation states of a low-molecular mass protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner I, Winkelmann G (1990) Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) inErwinia herbicola (Enterobacter agglomerans). Biol Metals 2:197–202

    Google Scholar 

  • Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of ferrioxamine E as the principal siderophore ofErwinia herbicola (Enterobacter agglomerans). Biol Metals 1:51–56

    Google Scholar 

  • Fecker L, Braun V (1983) Cloning and expression of thefhu genes involved in iron(III)-hydroxamate uptake byEscherichia coli. J Bacteriol 156:1301–1314

    PubMed  Google Scholar 

  • Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kertsers K, De Ley J (1989) Transfer ofEnterobacter agglomerans (Beijerinck 1988) Ewing and Fife 1972 to Pantoea gen. nov. asPantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

    Google Scholar 

  • Hantke K (1990) Dihydroxybenzoylserine — a siderophore forE. coli. FEMS Microbiol Lett 67:5–8

    Google Scholar 

  • Keller-Schierlein W, Prelog V (1961) Stoffwechselprodukte von Acetinomyceten. 30. Über das Ferrioxamin E; ein Beitrag zur Konstitution des Nocardamins. Helv Chim Acta 44:1981–1985

    Google Scholar 

  • Krone WJA, Steghuis F, Koningstein G, van Doom C, Roosendaal B, de Graaf FK, Oudega B (1985) Characterization of the pCo1V-K30-encoded cloacin/aerobactin outer membrane receptor protein ofEscherichia coli; isolation and purification of the protein and analysis of its nucleotide sequence and primary structure. Microbiol Lett 26:153–161

    Google Scholar 

  • Lundrigan MD, Kadner RJ (1986) Nucleotide sequence of the gene for the ferrienterochelin receptor FepA inEscherichia coli. J Biol Chem 261:10797–10801

    PubMed  Google Scholar 

  • Matzanke BF, Ecker DJ, Yang T-S, Huynh BH, Müller G, Raymond KN (1986) Iron enterobactin uptake inEscherichia coli followed by Mössbauer spectroscopy. J Bacteriol 167:674–680

    PubMed  Google Scholar 

  • Matzanke BF (1987) M6ssbauer spectroscopy of microbial iron uptake and metabolism. In: G. Winkelmann, D. van der Helm, J. B. Neilands (eds) Iron transport in microbes, plants and animals, Verlag Chemie Weinheim, pp 251–284

  • Matzanke BF, Bill E, Müller GI, Trautwein AX, Winkelmann G (1987a) Metabolic utilization of57Fe-labeled coprogen in Neurospora crassa. An in vivo M6ssbauer study. Eur J Biochem 162:643–650

    PubMed  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987b) Role of siderophores in iron storage in spores ofN. crassa andA. ochraceus. J Bacteriol 169:5873–5876

    PubMed  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia ofNeurospora crassa. Biol Metals 1:18–25

    Google Scholar 

  • Matzanke BF, Bill E, Müller GI, Trautwein AX, Winkelmann G (1989a) In vivo Mössbauer spectroscopy of iron uptake and ferrometabolism inEscherichia coli. Proceedings of the third Seeheim workshop on M6ssbauer spectroscopy. Hyperf Interact 47:311–327

    Google Scholar 

  • Matzanke BF, Müller-Matzanke G, Raymond KN (1989a) Siderophore-mediated iron transport. In: Loehr TM (ed) Iron carriers and iron proteins, VCH Publishers, New York, pp 1–121

    Google Scholar 

  • Matzanke BF, Müller G, Bill E, Trautwein AX (1989b) Iron metabolism ofE. coli studied by Mössbauer spectroscopy and biochemical methods. Eur J Biochem 183:371–379

    PubMed  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1990) Siderophores as iron-storage compounds in the yeastsRhodotorula minuta andUstilago sphaerogena detected by in vivo Mössbauer spectroscopy. Hyperf Interact 58:2359–2364

    Google Scholar 

  • Meiwes J (1989) Dissertation thesis, University of Tübingen

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Raymond KN, Müller GI, Matzanke BF (1984) Complexation of iron by siderophores. A review of their solution and structural chemistry and biological function, Top Curr Chem 123:49–102

    Google Scholar 

  • Sauer M, Hantke K, Braun V (1990) Sequence of thefhuE outer membrane receptor gene ofEscherichia coli K-12 and properties of mutants. Mol Microbiol 4:427–437

    PubMed  Google Scholar 

  • Staudenmaier J, Van hove B, Yraghi Z, Braun V (1989) Nucleotide sequences of thefecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate inEscherichia coli. J Bacteriol 171:2626–2633

    PubMed  Google Scholar 

  • Wagegg W, Braun V (1981) Ferric citrate transport inEscherichia coli requires outer membrane receptor protein FecA. J Bacteriol 145:156–163

    PubMed  Google Scholar 

  • Wong GB, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G (1983) Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. J Am Chem Soc 105:810–815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzanke, B.F., Berner, I., Bill, E. et al. Transport and utilization of ferrioxamine-E-bound iron inErwinia herbicola (Pantoea agglomerans). Biol Metals 4, 181–185 (1991). https://doi.org/10.1007/BF01141312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01141312

Key words

Navigation