Skip to main content

Synthetic bayleyite, Mg2[UO2(CO3)3]·18H2O: Thermochemistry, crystallography and crystal structure

Synthetischer Bayleyit, Mg2[UO2(CO3)3]·18H2O: Thermochemie, Kristallographie und Kristallstruktur

Summary

Thermochemistry, morphology, optical properties and crystal structure of synthetic bayleyite, Mg2[UO2(CO3)3]·18H2O, monoclinic, have been studied. Incongruent melting at 55°, three steps of dehydration and two steps of decarboxylation have been found by thermochemic investigations. Morphology: Prisms along [001] with {100}, {110}, {210}, {001}, {401}, {021}, {211}, {111} and\(\{ \bar 311\} \) as the most important forms. Optical data:n α=1.453,n β=1.498,n γ=1.499, 2V x =16°,Y=b,X c=11°. Crystal structure: Space groupP21/a,a=26.560(3),b=15.256(2),c=6.505(1) Å, β=92.90(1)°,Z=4,R=0.029 for 5126 independent reflections measured with MoK α-radiation. The structure is built up from isolated Mg(H2O)6 octahedra, UO2(CO3)3 units and lattice water molecules, all held together by hydrogen bonds only.

Zuseammenfasung

Thermochemie, Morphologie, optische Eigenschaften und Kristallstruktur von Bayleyit, Mg2[UO2(CO3)3]·18H2O, monoklin, wurden anhand künstlich hergestellter Kristalle untersucht. Durch thermochemische Untersuchung wurden inkongruentes Schmelzen bei 55°, eine dreistufige Wasserabgabe sowie eine zweistufige CO2-Abgabe festgestellt. Morphologie: parallel zu [001] gestreckte Prismen mit {100}, {110}, {210}, {001}, {401}, {021}, {211}, {111}, und {311} als wichtigste Formen. Optische Daten:n α=1.453,n β=1.498,n γ=1.499, 2V x =16°,Y=b,X c=11°. Kristallstruktur: RaumgruppeP21/a,a=26.560(3),b=15.256(2),c=6.505(1) Å, β=92.90(1)°,Z=4;R=0.029 für 5126 unabhängige, mit MoK α-Strahlung gemessene Reflexe. Die Struktur enthält isolierte Mg(H2O)6-Oktaeder, UO2(CO3)3-Gruppen und “freie” Wassermoleküle, die ausschließlich durch Wasserstoffbrücken miteinander verknüpft sind.

This is a preview of subscription content, access via your institution.

References

  1. Alwan, A. K., Williams, P. A., 1980: The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group. Min. Mag.43, 665–667.

    Google Scholar 

  2. Axelrod, J. M., Grimaldi, F. S., Milton, C., Murata, K. J., 1951: The uranium minerals from the Hillside Mine, Yavapal County, Arizona. Amer. Min.36, 1–22.

    Google Scholar 

  3. Bachelet, M., Cheylan, E., Davis, M., Goulette, J. C., 1952: Préparation et propriétés des uranylcarbonates. Soc. Chim. France Bull.1952, 565–569.

    Google Scholar 

  4. Bloss, F. D., 1981: The Spindle Stage, Principles and Practise. Cambridge: Cambridge University Press.

    Google Scholar 

  5. Catti, M., Franchini-Angela, M., Ivaldi, G., 1981: A case of polytypism in hydrated oxysalts: The crystal structure of Mg3(PO4)2·22H2O-II. Z. Krist.155, 53–64.

    Google Scholar 

  6. Ĉejka, J., 1969: To the chemistry of andersonite and thermal decomposition of dioxo-tricarbonatouranates. Collection Czechoslov. Chem. Commun.34, 1635–1656.

    Google Scholar 

  7. Cherkasov, V. A., Zhagin, B. P., Golandskaya, Z. D., 1968: Synthesis of Mg2[UO2(CO3)3] ·18H2O [bayleyite]. Zh. Neorg. Khim.13, 1205–1206. (In Russian).

    Google Scholar 

  8. Coda, A., Della Giusta, A., Tazzoli, V. 1981: The structure of synthetic andersonite, Na2Ca[UO2(CO3)3xH2O (x≏5.6). Acta Cryst.B37, 1496–1500.

    Google Scholar 

  9. Ferraris, G., Jones, D. W., Yerkess, J., 1973: Refinement of the crystal structure of magnesium sulphate heptahydrate (epsomite) by neutron diffration. J. Chem. Soc., Dalton Trans.1973, 816–821.

    Google Scholar 

  10. Frondel, C., 1958: Systematic Mineralogy of Uranium and Thorium, pp. 112–115, U.S. Geological Survey Bulletin 1064. Washington: U.S. Govt. Print. Office.

    Google Scholar 

  11. Matkovskii, A. O., Gevorkyan, S. V., Povarennykh, A. S., Sidorenko, G. A., Tarashchan, A. N., 1979: State of uranium-oxygen bonds in uranyl minerals according to IR spectroscopic data. Min. Sb.33, 11–22. (In Russian).

    Google Scholar 

  12. Mereiter, K., 1982: The crystal structure of liebigite, Ca2UO2(CO3)3·∼11H2O. Tschermaks Min. Petr. Mitt.30, 277–288.

    Google Scholar 

  13. — 1984: The crystal structure of albrechteshraufite, MgCa4F2(UO2)2(CO3)6·17H2O. Acta Cryst.A40 Suppl., C-247.

    Google Scholar 

  14. — 1986: The crystal structure of schröckingerite, NaCa3[UO2(CO3)3](SO4)F·10H2O. Tschermaks Min. Petr. Mitt.35, 1–18.

    Google Scholar 

  15. Meyrowitz, R., Lindberg, M. L. 1960: Synthetic bayleyite. U.S. Geological Survey Profess. Papers400-B, B440-B441.

    Google Scholar 

  16. Sasvari, K., Jeffrey, G. A., 1966: The crystal structure of magnesium chloride dodecahydrate, MgCl2·12H2O. Acta Cryst.20, 875–881.

    Google Scholar 

  17. Schroeder, L. W., Mathew, M., Brown, W. E., 1978: XO n−4 ion hydration: The crystal structure of Mg3(PO4)2·22H2O. J. Phys. Chem.82, 2335–2340.

    Google Scholar 

  18. Sheldrick, G. M., 1976: SHELX76, program for crystal structure determination. Univ. of Cambridge.

  19. Stern, T. W., Weeks, A. D., 1952: Second occurrence of bayleyite in the United States, Amer. Min.37, 1058–1061.

    Google Scholar 

  20. Urbanec, Z., Ĉejka, J., 1974: Thermal Analysis of the UO3−CO2−H2O system. Thermal Analysis1, 943–953 (Proceedings Fourth ICTA Budapest, 1974).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mayer, H., Mereiter, K. Synthetic bayleyite, Mg2[UO2(CO3)3]·18H2O: Thermochemistry, crystallography and crystal structure. TMPM Tschermaks Petr. Mitt. 35, 133–146 (1986). https://doi.org/10.1007/BF01140845

Download citation

Keywords

  • Hydrogen
  • Reflection
  • Crystal Structure
  • Hydrogen Bond
  • Water Molecule