Skip to main content
Log in

Use of finite element method for determining stress intensity factors with a conic-section simulation model of crack surface

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A method for the determination of the stress intensity factors of a cracked body using a conic-section-simulation model of the crack surface is presented. Stress distribution around the crack is determined using a finite element code having the elastic crack tip singularity 1/√r. This method improves the accuracy of the stress intensity factor values and is simple enough to be used with most standard isoparametric finite element programs. The method also eliminates the necessity of extrapolation to estimate the stress intensity factors at the crack tip.

Résumé

On présente une méthode pour déterminer les facteurs d'intensité de contrainte d'un corps fissuré en utilisant un modèle de simulation à section conique de la surface de la fissure. La distribution des contraintes aux alentours de la fissure est déterminée en utilisant un code d'eléments finis possédant un singularité de l'extrémité élastique de la fissure 1/√r. Cette méthode améliore la précision des valeurs de facteur d'intensité de contrainte et est suffisamment simple pour être utilisée dans la plupart des programmes d'élément fini standard isoparamétrique. La méthode élimine également la nécessité d'extrapoler à des valeurs estimées des facteurs d'intensité de contrainte aux extrémités de la fissure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Paris and G.C. Sih,Fracture Toughness Testing and Its Applications, STP 381, ASTM Philadelphia, Pa. (1965) 30–76.

    Google Scholar 

  2. N.I. Muskhelishvili,Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Holland (1953).

    Google Scholar 

  3. A.S. Kobayashi, R.D. Cherepy and W.C. Kinsel,Journal of Basic Engineering 86 (1964) 681–684.

    Google Scholar 

  4. J.E. Srawley and B. Gross, Materials Research and Standards 7 (1967) 155–162.

    Google Scholar 

  5. O.L. Bowie and D.M. Neal,International Journal of Fracture 6 (1970) 199–206.

    Google Scholar 

  6. J.C. Newman, Jr., NASA TND-6376 (1971).

  7. C.L. Chow and K.J. Lau,Journal of Strain Analysis 11 (1976) 18–25.

    Google Scholar 

  8. O.C. Zienkiewicz,The Finite Element Method in Engineering Science, McGraw-Hill, New York (1971).

    Google Scholar 

  9. S.K. Chan, I.S. Tuba and W.K Wilson,Engineering Fracture Mechanics 2 (1970) 1–17.

    Google Scholar 

  10. J.L. Swedlow, M.L. Williams and W.H. Yang,Proceedings of the First International Conference on Fracture 1 (1966) 259–282.

    Google Scholar 

  11. A.S. Kobayashi, D.E. Maiden, B.J. Simon and S. Isida, ASME paper No. 69-WAJPVP-12 (1969).

  12. J.R. Dixon and J.S. Strannigan,Journal of Strain Analysis 7 (1972) 125–131.

    Google Scholar 

  13. D.J. Hayes,International Journal of Fracture 8 (1972) 157–165.

    Google Scholar 

  14. V.B. Watwood, Jr.,Nuclear Engineering Design 11 (1969) 323–332.

    Google Scholar 

  15. E. Byskov,Engineering Fracture Mechanics 6 (1970) 159–167.

    Google Scholar 

  16. D.M. Tracey,Engineering Fracture Mechanics 3 (1971) 255–265.

    Google Scholar 

  17. J.R. Rice and D.M. Tracey, Numerical and Computer Methods in Structural Mechanics, Academic Press (1973) 585–621.

  18. T.H.H. Pian, P. Tong and C.H. Luk,Proceedings Air Force 3rd Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-71-160, Wright-Patterson A.F.B. (1971).

  19. S.E. Benzley,International Journal of Numerical Methods in Engineering 8 (1974) 537–545.

    Google Scholar 

  20. R.S. Barsoum,International Journal of Fracture 10 (1974) RCR 603–605.

    Google Scholar 

  21. R.S. Barsoum,International Journal of Numerical Methods in Engineering 10 (1976) 25–37.

    Google Scholar 

  22. R.D. Henshell and K.G. Shaw,International Journal of Numerical Methods in Engineering 9 (1975) 495–507.

    Google Scholar 

  23. C.L. Chow and K.J. Lau,International Journal of Fracture 12 (1976) 59–69.

    Google Scholar 

  24. C.L. Chow and K.J. Lau,International Journal of Fracture 12 (1976) 669–684.

    Google Scholar 

  25. I.N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons, Inc., New York (1970).

    Google Scholar 

  26. M. Isida,International Journal of Fracture 7 (1971) 301–316.

    Google Scholar 

  27. W.F. Brown and J.E. Srawley,Plane Strain Crack Toughness Testing of High Strength Metallic Materials, STP 410, ASTM (1967).

  28. K.J. Lau, Ph.D. Thesis, University of Hong Kong (1975).

  29. G.C. Sih, P.C. Paris and F. Erdogan,Journal of Applied Mechanics 29 (1962) 306–317.

    Google Scholar 

  30. W.K. Wilson, Research Report 69-IE7-FMECH-RI, Westinghouse Research Laboratories, Pittsburgh (1969).

    Google Scholar 

  31. H.D. Hibbit,International Journal of Numerical Methods in Engineering 11 (1977) 180–184.

    Google Scholar 

  32. J.R. Rice,Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, C.W., Kuruppu, M.D. Use of finite element method for determining stress intensity factors with a conic-section simulation model of crack surface. Int J Fract 20, 163–178 (1982). https://doi.org/10.1007/BF01140333

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01140333

Keywords

Navigation