Organic aerogels from the polycondensation of resorcinol with formaldehyde

Abstract

The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer “clusters”. The covalent crosslinking of these “clusters” produces gels which are processed under supercritical conditions to obtain low density, organic aerogels ( ⩽ 0.1 g cm−3). The aerogels are transparent, dark red in colour, and consist of interconnected colloidal-like particles with diameters of approximately 10 nm. The polymerization mechanism, structure and properties of the resorcinol-formaldehyde aerogels are similar to the sol-gel processing of silica.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    “Reversible Polymeric Gels and Related Systems”, edited by P. S. Russo, ACS Symposium Series 350 (American Chemical Society, Washington, DC. 1987).

  2. 2.

    J. Arnauts andH. Berghmans,Polymer Comm. 28 (1987) 66.

    Google Scholar 

  3. 3.

    M. Okabe, M. Isayama andH. Matsuda,Polymer J. 17(2) (1985) 369.

    Google Scholar 

  4. 4.

    E. Pine andW. Prins,Macromolecules 6(6) (1973) 888.

    Google Scholar 

  5. 5.

    H. Berghams, A. Donkers, L. Frenay, W. Stoks, F. E. DeSchryver, P. Moldenaers andJ. Mewis.Polymer 28 (1987) 97.

    Google Scholar 

  6. 6.

    A. L. Lehninger, “Biochemistry” (Worth Publishers Inc., New York, 1970) p. 131.

    Google Scholar 

  7. 7.

    W. W. Yan, J. J. Kirkland andD. D. Bly, “Modern Size-Exclusion Chromatography” (Wiley, New York, 1979) p. 165.

    Google Scholar 

  8. 8.

    B. J. Tighe, in “Hydrogels in Medicine and Pharmacy III”, edited by N. A. Peppas (CRC Press, Boca Raton, 1987) p. 53.

    Google Scholar 

  9. 9.

    P. Smith andP. J. Lemstra,J. Mater. Sci. 15 (1980) 505.

    Google Scholar 

  10. 10.

    W. Pusch andA. Walch,Angew. Chem. Int. Ed. Engl. 21 (1982) 660.

    Google Scholar 

  11. 11.

    “Materials Science of Synthetic Membranes”, edited by D. R. Lloyd, ACS Symposium Series 269 (American Chemical Society, Washington, DC, 1985).

  12. 12.

    A. T. Young, D. K. Moreno andR. G. Mansters,J. Vac. Sci. Tech. 20 (1982) 1094.

    Google Scholar 

  13. 13.

    J. H. Aubert andR. L. Clough,Polymer 26 (1985) 2047.

    Google Scholar 

  14. 14.

    “Better Ceramics Through Chemistry II”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, 1986).

  15. 15.

    C. J. Brinker, K. D. Keefer, D. W. Schaefer andC. S. Ashley,J. Non-Crystal. Solids 48 (1982) 47.

    Google Scholar 

  16. 16.

    M. Nogami andY. Moriya,ibid. 37 (1980) 191.

    Google Scholar 

  17. 17.

    C. J. Brinker andG. W. Scherer,ibid. 70 (1985) 301.

    Google Scholar 

  18. 18.

    P. J. Flory, “Principles of Polymer Chemistry” (Cornell University Press, Ithaca, 1953).

    Google Scholar 

  19. 19.

    R. K. Iler, “The Chemistry of Silica” (Wiley, New York, 1979).

    Google Scholar 

  20. 20.

    W. A. Keutgen, in “Encyclopedia of Polymer Science and Technology”, edited by H. F. Mark and N. G. Gaylord (Wiley, New York, 1969) Vol. 10, p. 1.

    Google Scholar 

  21. 21.

    J. Haslam andW. W. Soppet,J. Appl. Chem. 3 (1953) 328.

    Google Scholar 

  22. 22.

    J. Varagnat, in “Encyclopedia of Chemical Technology”, edited by H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Serborg (Wiley, New York, 1981) Vol. 13, p. 39.

    Google Scholar 

  23. 23.

    D. D. Werstler,Polymer 27 (1986) 757.

    Google Scholar 

  24. 24.

    A. Sebenik, U. Osredkar andI. Vizovisek,ibid. 22 (1981) 804.

    Google Scholar 

  25. 25.

    H. E. Kissinger.Anal. Chem. 29(11) (1957) 1702.

    Google Scholar 

  26. 26.

    Z. Katovic,J. Appl. Polymer Sci. 11 (1967) 95.

    Google Scholar 

  27. 27.

    D. O. Hummel, “Infrared Analysis of Polymers, Resins and Additives: An Atlas”, Vol. I (Wiley, New York, 1971).

    Google Scholar 

  28. 28.

    T. M. Tillotson, L. W. Hrubesh andI. Thomas, in “Better Ceramics through Chemistry III”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, Pennsylvania, 1988) Vol. 121, p. 685.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24, 3221–3227 (1989). https://doi.org/10.1007/BF01139044

Download citation

Keywords

  • Colour
  • Polymer
  • Formaldehyde
  • Polycondensation
  • Alkaline Condition