Advertisement

Journal of Materials Science

, Volume 24, Issue 9, pp 3087–3090 | Cite as

Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA)

  • M. Anwar
  • C. A. Hogarth
  • R. Bulpett
Article

Abstract

X-ray photoelectron spectroscopy (XPS) core level spectra of MoO3 substoichiometric amorphous thin films in the thickness range 100 to 670 nm were studied as a function of thickness. Some samples 500 nm thick were studied for different substrate temperatures in the range 293 to 543 K. It was observed that with the increase of thickness of the samples no change in the electron spectrum was observed in the material. Under vacuum conditions, MoO3 turned blue when the substrate temperature was higher than 373 K. XPS spectra supported the formation of the Mo5+ oxidation state in the blue samples. Blue coloration was observed after heating in vacuum and this was attributed to an internal electron transfer from oxygen to metallic orbitals by thermal ionization creating an Mo5+ oxidation state.

Keywords

Oxidation State Substrate Temperature MoO3 Electron Spectrum Vacuum Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Brown, “Photochromism” (Wiley, New York, 1971).Google Scholar
  2. 2.
    J. H. Schulman andW. D. Compton, “Color centres in Solids” (Pergamon, New York, 1963).Google Scholar
  3. 3.
    W. B. Fowler, “Physics of Color Centers” (Academic, New York, 1968).Google Scholar
  4. 4.
    J. W. Rabalais, R. J. Colton andA. M. Guzman,Chem. Phys. Lett. 29 (1974) 131.Google Scholar
  5. 5.
    R. J. Colton, A. M. Guzman andJ. W. Rabalais,J. Appl. Phys. 49 (1978) 409.Google Scholar
  6. 6.
    V. I. Spitsyn, I. E. Zimakov andL. I. Zemlyanova,Sov. Phys. Crystal. 11 (1966) 284.Google Scholar
  7. 7.
    L. E. Firment andA. Ferretti,Surface Sci. 129 (1983) 155.Google Scholar
  8. 8.
    E. B. Caruthers, A. Ferretti, L. E. Firment andR. V. Kasowski,J. Vac. Sci. Tech. A1(2) (1983) 1212.Google Scholar
  9. 9.
    F. Werfel andE. Suoninen,Appl. Phys. Series Ph 138 (1983) 171.Google Scholar
  10. 10.
    M. Anwar andC. A. Hogarth,Phys. Status Solidi (in press).Google Scholar
  11. 11.
    M. Anwar, C. A. Hogarth andK. A. K. Lott,J. Mater. Sci. (in press).Google Scholar
  12. 12.
    S. Tolansky, “An Introduction to Interferometry” (Longman, Green, London, 1955).Google Scholar
  13. 13.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder andG. E. Muilenberg, “Hand Book of X-ray Photoelectron Spectroscopy” (Perkin Elmer, Minnesota, 1979).Google Scholar
  14. 14.
    T. A. Carlson, “Photoelectron and Auger spectroscopy” (Plenum, New York, 1975).Google Scholar
  15. 15.
    T. H. Fleisch andG. J. Mains,J. Chem. Phys. 76 (1982) 780.Google Scholar
  16. 16.
    C. Tenret-Neol, J. Verbist andY. Gobillon,J. Microsc. Spectrosc. Electron. 1 (1976) 255.Google Scholar
  17. 17.
    Jiang Zhi-Cheng, An Li-Dun andYin Yuangen,Appl. Surf. Sci. 24 (1985) 134.Google Scholar
  18. 18.
    J. B. Goodenough, in “Progress in Solid State Chemistry”, Vol. 5, edited by H. Reiss (Pergamon, London, 1971) p. 145.Google Scholar
  19. 19.
    Y. Baba andT. A. Sasaki, JAERI Report M84-071 (1984) p. l.Google Scholar
  20. 20.
    K. S. Kim, W. E. Baitinger, J. W. Amy andN. Winograd,J. Electron Spectroscopy Rel. Phenom. 5 (1974) 351.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • M. Anwar
    • 1
  • C. A. Hogarth
    • 1
  • R. Bulpett
    • 2
  1. 1.Department of PhysicsBrunel UniversityUxbridgeUK
  2. 2.Experimental Techniques CentreBrunel UniversityUxbridgeUK

Personalised recommendations